Publications

Export 8 results:
Sort by: Author Title Type [ Year  (Desc)]
2015
Modini, RL, Frossard AA, Ahlm L, Russell LM, Corrigan CE, Roberts GC, Hawkins LN, Schroder JC, Bertram AK, Zhao R, Lee AKY, Abbatt JPD, Lin J, Nenes A, Wang Z, Wonaschutz A, Sorooshian A, Noone KJ, Jonsson H, Seinfeld JH, Toom-Sauntry D, Macdonald AM, Leaitch WR.  2015.  Primary marine aerosol-cloud interactions off the coast of California. Journal of Geophysical Research-Atmospheres. 120:4282-4303.   10.1002/2014jd022963   AbstractWebsite

Primary marine aerosol (PMA)-cloud interactions off the coast of California were investigated using observations of marine aerosol, cloud condensation nuclei (CCN), and stratocumulus clouds during the Eastern Pacific Emitted Aerosol Cloud Experiment (E-PEACE) and the Stratocumulus Observations of Los-Angeles Emissions Derived Aerosol-Droplets (SOLEDAD) studies. Based on recently reported measurements of PMA size distributions, a constrained lognormal-mode-fitting procedure was devised to isolate PMA number size distributions from total aerosol size distributions and applied to E-PEACE measurements. During the 12 day E-PEACE cruise on the R/V Point Sur, PMA typically contributed less than 15% of total particle concentrations. PMA number concentrations averaged 12 cm(-3) during a relatively calmer period (average wind speed 12m/s(1)) lasting 8 days, and 71cm(-3) during a period of higher wind speeds (average 16m/s(1)) lasting 5 days. On average, PMA contributed less than 10% of total CCN at supersaturations up to 0.9% during the calmer period; however, during the higher wind speed period, PMA comprised 5-63% of CCN (average 16-28%) at supersaturations less than 0.3%. Sea salt was measured directly in the dried residuals of cloud droplets during the SOLEDAD study. The mass fractions of sea salt in the residuals averaged 12 to 24% during three cloud events. Comparing the marine stratocumulus clouds sampled in the two campaigns, measured peak supersaturations were 0.20.04% during E-PEACE and 0.05-0.1% during SOLEDAD. The available measurements show that cloud droplet number concentrations increased with >100 nm particles in E-PEACE but decreased in the three SOLEDAD cloud events.

2013
Collins, DB, Ault AP, Moffet RC, Ruppel MJ, Cuadra-Rodriguez LA, Guasco TL, Corrigan CE, Pedler BE, Azam F, Aluwihare LI, Bertram TH, Roberts GC, Grassian VH, Prather KA.  2013.  Impact of marine biogeochemistry on the chemical mixing state and cloud forming ability of nascent sea spray aerosol. Journal of Geophysical Research-Atmospheres. 118:8553-8565.   10.1002/jgrd.50598   AbstractWebsite

The composition and properties of sea spray aerosol, a major component of the atmosphere, are often controlled by marine biological activity; however, the scope of impacts that ocean chemistry has on the ability for sea spray aerosol to act as cloud condensation nuclei (CCN) is not well understood. In this study, we utilize a mesocosm experiment to investigate the impact of marine biogeochemical processes on the composition and mixing state of sea spray aerosol particles with diameters<0.2 mu m produced by controlled breaking waves in a unique ocean-atmosphere facility. An increase in relative abundance of a distinct, insoluble organic particle type was observed after concentrations of heterotrophic bacteria increased in the seawater, leading to an 86 +/- 5% reduction in the hygroscopicity parameter () at 0.2% supersaturation. Aerosol size distributions showed very little change and the submicron organic mass fraction increased by less than 15% throughout the experiment; as such, neither of these typical metrics can explain the observed reduction in hygroscopicity. Predictions of the hygroscopicity parameter that make the common assumption that all particles have the same bulk organic volume fractions lead to overpredictions of CCN concentrations by 25% in these experiments. Importantly, key changes in sea spray aerosol mixing state that ultimately influenced CCN activity were driven by bacteria-mediated alterations to the organic composition of seawater.

2010
Martin, ST, Andreae MO, Artaxo P, Baumgardner D, Chen Q, Goldstein AH, Guenther A, Heald CL, Mayol-Bracero OL, McMurry PH, Pauliquevis T, Poschl U, Prather KA, Roberts GC, Saleska SR, Dias MAS, Spracklen DV, Swietlicki E, Trebs I.  2010.  Sources and properties of Amazonian aerosol particles. Reviews of Geophysics. 48   10.1029/2008rg000280   AbstractWebsite

This review provides a comprehensive account of what is known presently about Amazonian aerosol particles and concludes by formulating outlook and priorities for further research. The review is organized to follow the life cycle of Amazonian aerosol particles. It begins with a discussion of the primary and secondary sources relevant to the Amazonian particle burden, followed by a presentation of the particle properties that characterize the mixed populations present over the Amazon Basin at different times and places. These properties include number and mass concentrations and distributions, chemical composition, hygroscopicity, and cloud nucleation ability. The review presents Amazonian aerosol particles in the context of natural compared to anthropogenic sources as well as variability with season and meteorology. This review is intended to facilitate an understanding of the current state of knowledge on Amazonian aerosol particles specifically and tropical continental aerosol particles in general and thereby to enhance future research in this area.

Kuhn, U, Ganzeveld L, Thielmann A, Dindorf T, Schebeske G, Welling M, Sciare J, Roberts G, Meixner FX, Kesselmeier J, Lelieveld J, Kolle O, Ciccioli P, Lloyd J, Trentmann J, Artaxo P, Andreae MO.  2010.  Impact of Manaus City on the Amazon Green Ocean atmosphere: ozone production, precursor sensitivity and aerosol load. Atmospheric Chemistry and Physics. 10:9251-9282.   10.5194/acp-10-9251-2010   AbstractWebsite

As a contribution to the Large-Scale Biosphere-Atmosphere Experiment in Amazonia - Cooperative LBA Airborne Regional Experiment (LBA-CLAIRE-2001) field campaign in the heart of the Amazon Basin, we analyzed the temporal and spatial dynamics of the urban plume of Manaus City during the wet-to-dry season transition period in July 2001. During the flights, we performed vertical stacks of crosswind transects in the urban outflow downwind of Manaus City, measuring a comprehensive set of trace constituents including O-3, NO, NO2, CO, VOC, CO2, and H2O. Aerosol loads were characterized by concentrations of total aerosol number (CN) and cloud condensation nuclei (CCN), and by light scattering properties. Measurements over pristine rainforest areas during the campaign showed low levels of pollution from biomass burning or industrial emissions, representative of wet season background conditions. The urban plume of Manaus City was found to be joined by plumes from power plants south of the city, all showing evidence of very strong photochemical ozone formation. One episode is discussed in detail, where a threefold increase in ozone mixing ratios within the atmospheric boundary layer occurred within a 100 km travel distance downwind of Manaus. Observation-based estimates of the ozone production rates in the plume reached 15 ppb h(-1). Within the plume core, aerosol concentrations were strongly enhanced, with Delta CN/Delta CO ratios about one order of magnitude higher than observed in Amazon biomass burning plumes. Delta CN/Delta CO ratios tended to decrease with increasing transport time, indicative of a significant reduction in particle number by coagulation, and without substantial new particle nucleation occurring within the time/space observed. While in the background atmosphere a large fraction of the total particle number served as CCN (about 60-80% at 0.6% supersaturation), the CCN/CN ratios within the plume indicated that only a small fraction (16 +/- 12 %) of the plume particles were CCN. The fresh plume aerosols showed relatively weak light scattering efficiency. The CO-normalized CCN concentrations and light scattering coefficients increased with plume age in most cases, suggesting particle growth by condensation of soluble organic or inorganic species. We used a Single Column Chemistry and Transport Model (SCM) to infer the urban pollution emission fluxes of Manaus City, implying observed mixing ratios of CO, NOx and VOC. The model can reproduce the temporal/spatial distribution of ozone enhancements in the Manaus plume, both with and without accounting for the distinct (high NOx) contribution by the power plants; this way examining the sensitivity of ozone production to changes in the emission rates of NOx. The VOC reactivity in the Manaus region was dominated by a high burden of biogenic isoprene from the background rainforest atmosphere, and therefore NOx control is assumed to be the most effective ozone abatement strategy. Both observations and models show that the agglomeration of NOx emission sources, like power plants, in a well-arranged area can decrease the ozone production efficiency in the near field of the urban populated cores. But on the other hand remote areas downwind of the city then bear the brunt, being exposed to increased ozone production and N-deposition. The simulated maximum stomatal ozone uptake fluxes were 4 nmol m(-2) s(-1) close to Manaus, and decreased only to about 2 nmol m(-2) s(-1) within a travel distance >1500 km downwind from Manaus, clearly exceeding the critical threshold level for broadleaf trees. Likewise, the simulated N deposition close to Manaus was similar to 70 kg N ha(-1) a(-1) decreasing only to about 30 kg N ha(-1) a(-1) after three days of simulation.

2009
Shinozuka, Y, Clarke AD, DeCarlo PF, Jimenez JL, Dunlea EJ, Roberts GC, Tomlinson JM, Collins DR, Howell SG, Kapustin VN, McNaughton CS, Zhou J.  2009.  Aerosol optical properties relevant to regional remote sensing of CCN activity and links to their organic mass fraction: airborne observations over Central Mexico and the US West Coast during MILAGRO/INTEX-B. Atmospheric Chemistry and Physics. 9:6727-6742.   10.5194/acp-9-6727-2009   AbstractWebsite

Remote sensing of cloud condensation nuclei (CCN) would help evaluate the indirect effects of tropospheric aerosols on clouds and climate. To assess its feasibility, we examined relationships of submicron aerosol composition to CCN activity and optical properties observed during the MILAGRO/INTEX-B aircraft campaigns. An indicator of CCN activity, kappa, was calculated from hygroscopicity measured under saturation. kappa for dry 100 nm particles decreased with increasing organic fraction of non-refractory mass of submicron particles (OMF) as 0.34-0.20xOMF over Central Mexico and 0.47-0.43xOMF over the US West Coast. These fits represent the critical dry diameter, centered near 100 nm for 0.2% supersaturation but varied as kappa((-1/3)), within measurement uncertainty (similar to 20%). The decreasing trends of CCN activity with the organic content, evident also in our direct CCN counts, were consistent with previous ground and laboratory observations of highly organic particles. The wider range of OMF, 0-0.8, for our research areas means that aerosol composition will be more critical for estimation of CCN concentration than at the fixed sites previously studied. Furthermore, the wavelength dependence of extinction was anti-correlated with OMF as -0.70xOMF+2.0 for Central Mexico's urban and industrial pollution air masses, for unclear reasons. The Angstrom exponent of absorption increased with OMF, more rapidly under higher single scattering albedo, as expected for the interplay between soot and colored weak absorbers ( some organic species and dust). Because remote sensing products currently use the wavelength dependence of extinction albeit in the column integral form and may potentially include that of absorption, these regional spectral dependencies are expected to facilitate retrievals of aerosol bulk chemical composition and CCN activity over Central Mexico.

2008
Roberts, GC, Ramana MV, Corrigan C, Kim D, Ramanathan V.  2008.  Simultaneous observations of aerosol-cloud-albedo interactions with three stacked unmanned aerial vehicles. Proceedings of the National Academy of Sciences of the United States of America. 105:7370-7375.   10.1073/pnas.0710308105   AbstractWebsite

Aerosol impacts on climate change are still poorly understood, in part, because the few observations and methods for detecting their effects are not well established. For the first time, the enhancement in cloud albedo is directly measured on a cloud-by-cloud basis and linked to increasing aerosol concentrations by using multiple autonomous unmanned aerial vehicles to simultaneously observe the cloud microphysics, vertical aerosol distribution, and associated solar radiative fluxes. In the presence of long-range transport of dust and anthropogenic pollution, the trade cumuli have higher droplet concentrations and are on average brighter. Our observations suggest a higher sensitivity of radiative forcing by trade cumuli to increases in cloud droplet concentrations. than previously reported owing to a constrained droplet radius such that increases in droplet concentrations also increase cloud liquid water content. This aerosol-cloud forcing efficiency is as much as -60 W m(-2) per 100% percent cloud fraction for a doubling of droplet concentrations and associated increase of liquid water content. Finally, we develop a strategy for detecting aerosol-cloud interactions based on a nondimensional scaling analysis that relates the contribution of single clouds to albedo measurements and illustrates the significance of characterizing cloud morphology in resolving radiometric measurements. This study demonstrates that aerosol-cloud-albedo interactions can be directly observed by simultaneous observations below, in, and above the clouds.

Furutani, H, Dall'osto M, Roberts GC, Prather KA.  2008.  Assessment of the relative importance of atmospheric aging on CCN activity derived from field observations. Atmospheric Environment. 42:3130-3142.   10.1016/j.atmosenv.2007.09.024   AbstractWebsite

The effect of atmospheric aging on the cloud condensation nuclei (CCN) activity of atmospheric aerosols was studied by comparing different air masses with different degrees of aging along the southern coast of California over the Pacific Ocean during a research cruise on the R/V Roger Revelle from 2-19 November 2004. Activation diameters (D(act)) were calculated using the measured CCN concentrations, condensation nuclei (CN) concentrations, and particle size distributions. Measurements of single particle size and chemistry, as well as black carbon (BC) concentrations with an aethalometer, were made to provide further insight into aerosol chemistry. A gradient of aerosol concentrations was encountered: along the coast of California, the highest BC and CN concentrations (1000-6000 ng m(-3) and 2000-15,000 cm(-3)) were measured which decreased as the ship moved away from shore to much lower values (<100 ng m(-3), similar to 300 cm(-3)). In all regions, external mixtures of organic carbon, elemental carbon, sea salt, and dust aerosols frequently associated with nitrate and sulfate were observed. A correlation plot between the CCN/CN ratio and D(act) exhibits a clear linear correlation, showing a distinct relationship between the extent of anthropogenic aging and CCN activity with the most highly aged air masses showing the highest CCN activity and smallest D(act). These results show changes in aerosol chemistry due to atmospheric aging that play an important role in determining the CCN activity of atmospheric aerosols. The present study demonstrates that variations in aerosol chemistry must be taken into account in models to adequately account for the physicochemical properties of atmospheric aerosols and their CCN activity. (C) 2007 Published by Elsevier Ltd.

2004
Rissler, J, Swietlicki E, Zhou J, Roberts G, Andreae MO, Gatti LV, Artaxo P.  2004.  Physical properties of the sub-micrometer aerosol over the Amazon rain forest during the wet-to-dry season transition - comparison of modeled and measured CCN concentrations. Atmospheric Chemistry and Physics. 4:2119-2143.   10.5194/acp-4-2119-2004   AbstractWebsite

Sub-micrometer atmospheric aerosol particles were studied in the Amazon region, 125 km northeast of Manaus, Brazil (-1degrees55.2'S, 59degrees28.1'W). The measurements were performed during the wet-to-dry transition period, 4-28 July 2001 as part of the LBA (Large-Scale Biosphere Atmosphere Experiment in Amazonia) CLAIRE-2001 (Cooperative LBA Airborne Regional Experiment) experiment. The number size distribution was measured with two parallel differential mobility analyzers, the hygroscopic growth at 90% RH with a Hygroscopic Tandem Mobility Analyzer (H-TDMA) and the concentrations of cloud condensation nuclei (CCN) with a cloud condensation nuclei counter. A model was developed that uses the H-TDMA data to predict the number of soluble molecules or ions in the individual particles and the corresponding minimum particle diameter for activation into a cloud droplet at a certain supersaturation. Integrating the number size distribution above this diameter, CCN concentrations were predicted with a time resolution of 10 min and compared to the measured concentrations. During the study period, three different air masses were identified and compared: clean background, air influenced by aged biomass burning, and moderately polluted air from recent local biomass burning. For the clean period 2001, similar number size distributions and hygroscopic behavior were observed as during the wet season at the same site in 1998, with mostly internally mixed particles of low diameter growth factor (similar to1.3 taken from dry to 90% RH). During the periods influenced by biomass burning the hygroscopic growth changed slightly, but the largest difference was seen in the number size distribution. The CCN model was found to be successful in predicting the measured CCN concentrations, typically within 25%. A sensitivity study showed relatively small dependence on the assumption of which model salt that was used to predict CCN concentrations from H-TDMA data. One strength of using H-TDMA data to predict CCN concentrations is that the model can also take into account soluble organic compounds, insofar as they go into solution at 90% RH. Another advantage is the higher time resolution compared to using size-resolved chemical composition data.