Publications

Export 2 results:
Sort by: Author Title Type [ Year  (Desc)]
2017
Claeys, M, Roberts G, Mallet M, Arndt J, Sellegri K, Sciare J, Wenger J, Sauvage B.  2017.  Optical, physical and chemical properties of aerosols transported to a coastal site in the western Mediterranean: a focus on primary marine aerosols. Atmospheric Chemistry and Physics. 17:7891-7915.   10.5194/acp-17-7891-2017   AbstractWebsite

As part of the ChArMEx-ADRIMED campaign (summer 2013), ground-based in situ observations were conducted at the Ersa site (northern tip of Corsica; 533 m a.s.l.) to characterise the optical, physical and chemical properties of aerosols. During the observation period, a major influence of primary marine aerosols was detected (22-26 June), with a mass concentration reaching up to 6.5 mu g m(-3) and representing more than 40% of the total PM10 mass concentration. Its relatively low ratio of chloride to sodium (average of 0.57) indicates a fairly aged sea salt aerosol at Ersa. In this work, an original data set, obtained from online real-time instruments (ATOFMS, PILS-IC) has been used to characterise the ageing of primary marine aerosols (PMAs). During this PMA period, the mixing of fresh and aged PMAs was found to originate from both local and regional (Gulf of Lion) emissions, according to local wind measurements and FLEXPART back trajectories. Two different aerosol regimes have been identified: a dust outbreak (dust) originating from Algeria/Tunisia, and a pollution period with aerosols originating from eastern Europe, which includes anthropogenic and biomass burning sources (BBP). The optical, physical and chemical properties of the observed aerosols, as well as their local shortwave (SW) direct radiative effect (DRE) in clear-sky conditions, are compared for these three periods in order to assess the importance of the direct radiative impact of PMAs compared to other sources above the western Mediterranean Basin. As expected, AERONET retrievals indicate a relatively low local SW DRF during the PMA period with mean values of -11 +/- 4 at the surface and -8 +/- 3W m(-2) at the top of the atmosphere (TOA). In comparison, our results indicate that the dust outbreak observed at our site during the campaign, although of moderate intensity (AOD of 0.3-0.4 at 440 nm and column-integrated SSA of 0.90-0.95), induced a local instantaneous SW DRF that is nearly 3 times the effect calculated during the PMA period, with maximum values up to -40 W m(-2) at the surface. A similar range of values were found for the BBP period to those during the dust period (SW DRF at the surface and TOA of -23 +/- 6 and -15 +/- 4 W m(-2) respectively). The multiple sources of measurements at Ersa allowed the detection of a PMA-dominant period and their characterisation in terms of ageing, origin, transport, optical and physical properties and direct climatic impact.

2007
Ramana, MV, Ramanathan V, Kim D, Roberts GC, Corrigan CE.  2007.  Albedo, atmospheric solar absorption and heating rate measurements with stacked UAVs. Quarterly Journal of the Royal Meteorological Society. 133:1913-1931.   10.1002/qj.172   AbstractWebsite

This paper reports unique measurements of albedo, atmospheric solar absorption, and heating rates in the visible (0.4 to 0.7 mu m) and broadband (0.3 to 2.8 mu m) spectral regions using vertically stacked multiple lightweight autonomous unmanned aerial vehicles (UAVs). The most significant finding of this study is that when absorbing aerosols and water vapour concentrations are measured accurately and accounted for in models, and when heating rates are measured directly with stacked aircraft, the simulated clear sky heating rates are consistent with the observed broadband heating rates within experimental errors (about 15%). We conclude that there is no need to invoke anomalous or excess absorption or unknown physics in clear skies. Aerosol-radiation-cloud measurements were made over the tropical Indian Ocean within the lowest 3 km of the atmosphere during the Maldives Autonomous UAV Campaign (MAC). The UAVs and ground-based remote sensing instruments determined most of the parameters required for calculating the albedo and vertical distribution of solar fluxes. The paper provides a refined analytical procedure to reduce errors and biases due to the offset errors arising from mounting of the radiometers on the aircraft and due to the aircraft attitude. Measured fluxes have been compared with those derived from a Monte-Carlo radiative transfer algorithm which can incorporate both gaseous and aerosol components. Under cloud-free conditions the calculated and measured incoming fluxes agree within 2-10 W m(-2) (<1%) depending upon the altitudes. Similarly, the measured and calculated reflected fluxes agreed within 2-5 W m(-2) (<5%). The analysis focuses on a cloud-free day when the air was polluted due to long-range transport from India, and the mean aerosol optical depth (AOD) was 0.31 and mean single scattering albedo was 0.92. The UAV-measured absorption AOD, was 0.019 which agreed within 20% of the value of 0.024 reported by a ground-based instrument. The observed and simulated solar absorption agreed within 5% above 1.0 km and aerosol absorption accounted for 30% to 50% of the absorption depending upon the altitude and solar zenith angle. Thus there was no need to invoke spurious or anomalous absorption, provided we accounted for aerosol black carbon. The diurnal mean absorption values for altitudes between 0.5 and 3.0 km above mean sea level were observed to be 41 +/- 3 W m(-2) (1.5 K/day) in the broadband region and 8 +/- 2 W m(-2) (0.3 K/day) in the visible region. The contribution of absorbing aerosols to the heating rate was an order of magnitude larger than the contribution of CO2 and one-third that of the water vapour. In the lowest 3 km of the tropical atmosphere, aerosols accounted for more than 80% of the atmospheric absorption in the visible region. Copyright (c) 2007 Royal Meteorological Society.