Publications

Export 5 results:
Sort by: Author Title Type [ Year  (Desc)]
2014
Werner, F, Ditas F, Siebert H, Simmel M, Wehner B, Pilewskie P, Schmeissner T, Shaw RA, Hartmann S, Wex H, Roberts GC, Wendisch M.  2014.  Twomey effect observed from collocated microphysical and remote sensing measurements over shallow cumulus. Journal of Geophysical Research-Atmospheres. 119:1534-1545.   10.1002/2013jd020131   AbstractWebsite

Clear experimental evidence of the Twomey effect for shallow trade wind cumuli near Barbados is presented. Effective droplet radius (r(eff)) and cloud optical thickness (), retrieved from helicopter-borne spectral cloud-reflected radiance measurements, and spectral cloud reflectivity () are correlated with collocated in situ observations of the number concentration of aerosol particles from the subcloud layer (N). N denotes the concentration of particles larger than 80 nm in diameter and represents particles in the activation mode. In situ cloud microphysical and aerosol parameters were sampled by the Airborne Cloud Turbulence Observation System (ACTOS). Spectral cloud-reflected radiance data were collected by the Spectral Modular Airborne Radiation measurement sysTem (SMART-HELIOS). With increasing N a shift in the probability density functions of and toward larger values is observed, while the mean values and observed ranges of retrieved r(eff) decrease. The relative susceptibilities (RS) of r(eff), , and to N are derived for bins of constant liquid water path. The resulting values of RS are in the range of 0.35 for r(eff) and , and 0.27 for . These results are close to the maximum susceptibility possible from theory. Overall, the shallow cumuli sampled near Barbados show characteristics of homogeneous, plane-parallel clouds. Comparisons of RS derived from in situ measured r(eff) and from a microphysical parcel model are in close agreement.

2006
Wilcox, EM, Roberts G, Ramanathan V.  2006.  Influence of aerosols on the shortwave cloud radiative forcing from North Pacific oceanic clouds: Results from the Cloud Indirect Forcing Experiment (CIFEX). Geophysical Research Letters. 33   10.1029/2006gl027150   AbstractWebsite

Aerosols over the Northeastern Pacific Ocean enhance the cloud drop number concentration and reduce the drop size for marine stratocumulus and cumulus clouds. These microphysical effects result in brighter clouds, as evidenced by a combination of aircraft and satellite observations. In-situ measurements from the Cloud Indirect Forcing Experiment (CIFEX) indicate that the mean cloud drop number concentration in low clouds over the polluted marine boundary layer is greater by 53 cm(-3) compared to clean clouds, and the mean cloud drop effective radius is smaller by 4 mm. We link these in-situ measurements of cloud modification by aerosols, for the first time, with collocated satellite broadband radiative flux observations from the Clouds and the Earth's Radiant Energy System to show that these microphysical effects of aerosols enhance the top-of-atmosphere cooling by similar to 9.9 +/- 4.3 W m(-2) for overcast conditions.

2004
Conant, WC, VanReken TM, Rissman TA, Varutbangkul V, Jonsson HH, Nenes A, Jimenez JL, Delia AE, Bahreini R, Roberts GC, Flagan RC, Seinfeld JH.  2004.  Aerosol-cloud drop concentration closure in warm cumulus. Journal of Geophysical Research-Atmospheres. 109   10.1029/2003jd004324   AbstractWebsite

[1] Our understanding of the activation of aerosol particles into cloud drops during the formation of warm cumulus clouds presently has a limited observational foundation. Detailed observations of aerosol size and composition, cloud microphysics and dynamics, and atmospheric thermodynamic state were collected in a systematic study of 21 cumulus clouds by the Center for Interdisciplinary Remotely-Piloted Aircraft Studies (CIRPAS) Twin Otter aircraft during NASA's Cirrus Regional Study of Tropical Anvils and Cirrus Layers - Florida Area Cirrus Experiment (CRYSTAL-FACE). An "aerosol-cloud'' closure study was carried out in which a detailed cloud activation parcel model, which predicts cloud drop concentration using observed aerosol concentration, size distribution, cloud updraft velocity, and thermodynamic state, is evaluated against observations. On average, measured droplet concentration in adiabatic cloud regions is within 15% of the predictions. This agreement is corroborated by independent measurements of aerosol activation carried out by two cloud condensation nucleus (CCN) counters on the aircraft. Variations in aerosol concentration, which ranged from 300 to 3300 cm(-3), drives large microphysical differences ( 250 2300 cm(-3)) observed among continental and maritime clouds in the South Florida region. This is the first known study in which a cloud parcel model is evaluated in a closure study using a constraining set of data collected from a single platform. Likewise, this is the first known study in which relationships among aerosol size distribution, CCN spectrum, and cloud droplet concentration are all found to be consistent with theory within experimental uncertainties much less than 50%. Vertical profiles of cloud microphysical properties ( effective radius, droplet concentration, dispersion) clearly demonstrate the boundary layer aerosol's effect on cloud microphysics throughout the lowest 1 km of cloud depth. Onboard measurements of aerosol hygroscopic growth and the organic to sulfate mass ratio are related to CCN properties. These chemical data are used to quantify the range of uncertainty associated with the simplified treatment of aerosol composition assumed in the closure study.

2003
Roberts, GC, Nenes A, Seinfeld JH, Andreae MO.  2003.  Impact of biomass burning on cloud properties in the Amazon Basin. Journal of Geophysical Research-Atmospheres. 108   10.1029/2001jd000985   AbstractWebsite

[1] We used a one-dimensional (1-D) cloud parcel model to assess the impact of biomass-burning aerosol on cloud properties in the Amazon Basin and to identify the physical and chemical properties of the aerosol that influence droplet growth. Cloud condensation nuclei (CCN) measurements were performed between 0.15% and 1.5% supersaturation at ground-based sites in the states of Amazonas and Rondonia, Brazil during several field campaigns in 1998 and 1999 as part of the Large-Scale Biosphere - Atmosphere (LBA) Experiment in Amazonia. CCN concentrations measured during the wet season were low and resembled concentrations more typical of marine conditions than most continental sites. During the dry season, smoke aerosol from biomass burning dramatically increased CCN concentrations. The modification of cloud properties, such as cloud droplet effective radius and maximum supersaturation, is most sensitive at low CCN concentrations. Hence, we could expect larger interannual variation of cloud properties during the wet season that the dry season. We found that differences between CCN spectra from forested and deforested regions during the wet season are modest and result in modifications of cloud properties that are small compared to those between wet and dry seasons. Our study suggests that the differences in surface albedo, rather than cloud albedo, between forested and deforested regions may dominate the impact of deforestation on the hydrological cycle and convective activity during the wet season. During the dry season, on the other hand, cloud droplet concentrations may increase by up to 7 times, which leads to a model-predicted decrease in cloud effective radius by a factor of 2. This could imply a maximum indirect radiative forcing due to aerosol as high as ca. -27 W m(-2) for a nonabsorbing cloud. Light-absorbing substances in smoke darken the Amazonian clouds and reduce the net radiative forcing, and a comparison of the Advanced Very High Resolution Radiometer (AVHRR) analysis and our modeling studies suggests that absorption of sunlight due to smoke aerosol may compensate for about half of the maximum aerosol effect. Sensitivity tests show that complete characterization of the aerosol is necessary when kinetic growth limitations become important. Subtle differences in the chemical and physical makeup are shown to be particularly influential in the activation and growth behavior of the aerosol. Knowledge of the CCN spectrum alone is not sufficient to fully capture the climatic influence of biomass burning.

1999
Kettle, AJ, Andreae MO, Amouroux D, Andreae TW, Bates TS, Berresheim H, Bingemer H, Boniforti R, Curran MAJ, DiTullio GR, Helas G, Jones GB, Keller MD, Kiene RP, Leck C, Levasseur M, Malin G, Maspero M, Matrai P, McTaggart AR, Mihalopoulos N, Nguyen BC, Novo A, Putaud JP, Rapsomanikis S, Roberts G, Schebeske G, Sharma S, Simo R, Staubes R, Turner S, Uher G.  1999.  A global database of sea surface dimethylsulfide (DMS) measurements and a procedure to predict sea surface DMS as a function of latitude, longitude, and month. Global Biogeochemical Cycles. 13:399-444.   10.1029/1999gb900004   AbstractWebsite

A database of 15,617 point measurements of dimethylsulfide (DMS) in surface waters along with lesser amounts of data for aqueous and particulate dimethylsulfoniopropionate concentration, chlorophyll concentration, sea surface salinity and temperature, and wind speed has been assembled. The database was processed to create a series of climatological annual and monthly 1 degrees x1 degrees latitude-longitude squares of data. The results were compared to published fields of geophysical and biological parameters. No significant correlation was found between DMS and these parameters, and no simple algorithm could be found to create monthly fields of sea surface DMS concentration based on these parameters. Instead, an annual map of sea surface DMS was produced using an algorithm similar to that employed by Conkright et al. [1994]. In this approach, a first-guess field of DMS sea surface concentration measurements is created and then a correction to this field is generated based on actual measurements. Monthly sea surface grids of DMS were obtained using a similar scheme, but the sparsity of DMS measurements made the method difficult to implement. A scheme was used which projected actual data into months of the year where no data were otherwise present.