Export 10 results:
Sort by: Author Title Type [ Year  (Desc)]
Sanchez, KJ, Roberts GC, Calmer R, Nicoll K, Hashimshoni E, Rosenfeld D, Ovadnevaite J, Preissler J, Ceburnis D, O'Dowd C, Russell LM.  2017.  Top-down and bottom-up aerosol-cloud closure: towards understanding sources of uncertainty in deriving cloud shortwave radiative flux. Atmospheric Chemistry and Physics. 17:9797-9814.   10.5194/acp-17-9797-2017   AbstractWebsite

Top-down and bottom-up aerosol-cloud shortwave radiative flux closures were conducted at the Mace Head Atmospheric Research Station in Galway, Ireland, in August 2015. This study is part of the BACCHUS (Impact of Biogenic versus Anthropogenic emissions on Clouds and Climate: towards a Holistic UnderStanding) European collaborative project, with the goal of understanding key processes affecting aerosol-cloud shortwave radiative flux closures to improve future climate predictions and develop sustainable policies for Europe. Instrument platforms include ground-based unmanned aerial vehicles (UAVs)(1) and satellite measurements of aerosols, clouds and meteorological variables. The ground-based and airborne measurements of aerosol size distributions and cloud condensation nuclei (CCN) concentration were used to initiate a 1-D microphysical aerosol-cloud parcel model (ACPM). UAVs were equipped for a specific science mission, with an optical particle counter for aerosol distribution profiles, a cloud sensor to measure cloud extinction or a five-hole probe for 3D wind vectors. UAV cloud measurements are rare and have only become possible in recent years through the miniaturization of instrumentation. These are the first UAV measurements at Mace Head. ACPM simulations are compared to in situ cloud extinction measurements from UAVs to quantify closure in terms of cloud shortwave radiative flux. Two out of seven cases exhibit sub-adiabatic vertical temperature profiles within the cloud, which suggests that entrainment processes affect cloud microphysical properties and lead to an overestimate of simulated cloud shortwave radiative flux. Including an entrainment parameterization and explicitly calculating the entrainment fraction in the ACPM simulations both improved cloud-top radiative closure. Entrainment reduced the difference between simulated and observation-derived cloud-top shortwave radiative flux (delta RF) by between 25 and 60Wm(-2). After accounting for entrainment, satellite-derived cloud droplet number concentrations (CDNCs) were within 30% of simulated CDNC. In cases with a well-mixed boundary layer, delta RF is no greater than 20Wm(-2) after accounting for cloud-top entrainment and up to 50Wm(-2) when entrainment is not taken into account. In cases with a decoupled boundary layer, cloud microphysical properties are inconsistent with ground-based aerosol measurements, as expected, and delta RF is as high as 88Wm(-2), even high (> 30Wm(-2)) after accounting for cloud-top entrainment. This work demonstrates the need to take in situ measurements of aerosol properties for cases where the boundary layer is decoupled as well as consider cloud-top entrainment to accurately model stratocumulus cloud radiative flux.

Werner, F, Ditas F, Siebert H, Simmel M, Wehner B, Pilewskie P, Schmeissner T, Shaw RA, Hartmann S, Wex H, Roberts GC, Wendisch M.  2014.  Twomey effect observed from collocated microphysical and remote sensing measurements over shallow cumulus. Journal of Geophysical Research-Atmospheres. 119:1534-1545.   10.1002/2013jd020131   AbstractWebsite

Clear experimental evidence of the Twomey effect for shallow trade wind cumuli near Barbados is presented. Effective droplet radius (r(eff)) and cloud optical thickness (), retrieved from helicopter-borne spectral cloud-reflected radiance measurements, and spectral cloud reflectivity () are correlated with collocated in situ observations of the number concentration of aerosol particles from the subcloud layer (N). N denotes the concentration of particles larger than 80 nm in diameter and represents particles in the activation mode. In situ cloud microphysical and aerosol parameters were sampled by the Airborne Cloud Turbulence Observation System (ACTOS). Spectral cloud-reflected radiance data were collected by the Spectral Modular Airborne Radiation measurement sysTem (SMART-HELIOS). With increasing N a shift in the probability density functions of and toward larger values is observed, while the mean values and observed ranges of retrieved r(eff) decrease. The relative susceptibilities (RS) of r(eff), , and to N are derived for bins of constant liquid water path. The resulting values of RS are in the range of 0.35 for r(eff) and , and 0.27 for . These results are close to the maximum susceptibility possible from theory. Overall, the shallow cumuli sampled near Barbados show characteristics of homogeneous, plane-parallel clouds. Comparisons of RS derived from in situ measured r(eff) and from a microphysical parcel model are in close agreement.

Siebert, H, Beals M, Bethke J, Bierwirth E, Conrath T, Dieckmann K, Ditas F, Ehrlich A, Farrell D, Hartmann S, Izaguirre MA, Katzwinkel J, Nuijens L, Roberts G, Schafer M, Shaw RA, Schmeissner T, Serikov I, Stevens B, Stratmann F, Wehner B, Wendisch M, Werner F, Wex H.  2013.  The fine-scale structure of the trade wind cumuli over Barbados - an introduction to the CARRIBA project. Atmospheric Chemistry and Physics. 13:10061-10077.   10.5194/acp-13-10061-2013   AbstractWebsite

The CARRIBA (Cloud, Aerosol, Radiation and tuRbulence in the trade wInd regime over BArbados) project, focused on high resolution and collocated measurements of thermodynamic, turbulent, microphysical, and radiative properties of trade wind cumuli over Barbados, is introduced. The project is based on two one-month field campaigns in November 2010 (climatic wet season) and April 2011 (climatic dry season). Observations are based on helicopterborne and ground-based measurements in an area of 100 km(2) off the coast of Barbados. CARRIBA is accompanied by long-term observations at the Barbados Cloud Observatory located at the East coast of Barbados since early in 2010 and which provides a longer-term context for the CARRIBA measurements. The deployed instrumentation and sampling strategy are presented together with a classification of the meteorological conditions. The two campaigns were influenced by different air masses advected from the Caribbean area, the Atlantic Ocean, and the African continent which led to distinct aerosol conditions. Pristine conditions with low aerosol particle number concentrations of similar to 100 cm(3) were alternating with periods influenced by Saharan dust or aerosol from biomass burning resulting in comparably high number concentrations of similar to 500 cm(3). The biomass burning aerosol was originating from both the Caribbean area and Africa. The shallow cumulus clouds responded to the different aerosol conditions with a wide range of mean droplet sizes and number concentrations. Two days with different aerosol and cloud microphysical properties but almost identical meteorological conditions have been analyzed in detail. The differences in the droplet number concentration and droplet sizes appear not to show any significant change for turbulent cloud mixing, but the relative roles of droplet inertia and sedimentation in initiating coalescence, as well as the cloud reflectivity, do change substantially.

Sullivan, RC, Moore MJK, Petters MD, Kreidenweis SM, Roberts GC, Prather KA.  2009.  Effect of chemical mixing state on the hygroscopicity and cloud nucleation properties of calcium mineral dust particles. Atmospheric Chemistry and Physics. 9:3303-3316.   10.5194/acp-9-3303-2009   AbstractWebsite

Atmospheric mineral dust particles can alter cloud properties and thus climate by acting as cloud condensation nuclei (CCN) that form cloud droplets. The CCN activation properties of various calcium mineral dust particles were studied experimentally to investigate the consequences of field observations showing the segregation of sulphate from nitrate and chloride between individual aged Asian dust particles, and the enrichment of oxalic acid in Asian dust. Each mineral's observed apparent hygroscopicity was primarily controlled by its solubility, which determines the degree to which the mineral's intrinsic hygroscopicity can be expressed. The significant increase in hygroscopicity caused by mixing soluble hygroscopic material with insoluble mineral particles is also presented. Insoluble minerals including calcium carbonate, representing fresh unprocessed dust, and calcium sulphate, representing atmospherically processed dust, had similarly small apparent hygroscopicities. Their activation is accurately described by a deliquescence limit following the Kelvin effect and corresponded to an apparent single-hygroscopicity parameter, kappa, of similar to 0.001. Soluble calcium chloride and calcium nitrate, representing atmospherically processed mineral dust particles, were much more hygroscopic, activating similar to ammonium sulphate with kappa similar to 0.5. Calcium oxalate monohydrate (kappa=0.05) was significantly less CCN-active than oxalic acid (kappa=0.3), but not as inactive as its low solubility would predict. These results indicate that the common assumption that all mineral dust particles become more hygroscopic and CCN-active after atmospheric processing should be revisited. Calcium sulphate and calcium oxalate are two realistic proxies for aged mineral dust that remain non-hygroscopic. The dust's apparent hygroscopicity will be controlled by its chemical mixing state, which is determined by its mineralogy and the chemical reaction pathways it experiences during transport.

Rissler, J, Swietlicki E, Zhou J, Roberts G, Andreae MO, Gatti LV, Artaxo P.  2004.  Physical properties of the sub-micrometer aerosol over the Amazon rain forest during the wet-to-dry season transition - comparison of modeled and measured CCN concentrations. Atmospheric Chemistry and Physics. 4:2119-2143.   10.5194/acp-4-2119-2004   AbstractWebsite

Sub-micrometer atmospheric aerosol particles were studied in the Amazon region, 125 km northeast of Manaus, Brazil (-1degrees55.2'S, 59degrees28.1'W). The measurements were performed during the wet-to-dry transition period, 4-28 July 2001 as part of the LBA (Large-Scale Biosphere Atmosphere Experiment in Amazonia) CLAIRE-2001 (Cooperative LBA Airborne Regional Experiment) experiment. The number size distribution was measured with two parallel differential mobility analyzers, the hygroscopic growth at 90% RH with a Hygroscopic Tandem Mobility Analyzer (H-TDMA) and the concentrations of cloud condensation nuclei (CCN) with a cloud condensation nuclei counter. A model was developed that uses the H-TDMA data to predict the number of soluble molecules or ions in the individual particles and the corresponding minimum particle diameter for activation into a cloud droplet at a certain supersaturation. Integrating the number size distribution above this diameter, CCN concentrations were predicted with a time resolution of 10 min and compared to the measured concentrations. During the study period, three different air masses were identified and compared: clean background, air influenced by aged biomass burning, and moderately polluted air from recent local biomass burning. For the clean period 2001, similar number size distributions and hygroscopic behavior were observed as during the wet season at the same site in 1998, with mostly internally mixed particles of low diameter growth factor (similar to1.3 taken from dry to 90% RH). During the periods influenced by biomass burning the hygroscopic growth changed slightly, but the largest difference was seen in the number size distribution. The CCN model was found to be successful in predicting the measured CCN concentrations, typically within 25%. A sensitivity study showed relatively small dependence on the assumption of which model salt that was used to predict CCN concentrations from H-TDMA data. One strength of using H-TDMA data to predict CCN concentrations is that the model can also take into account soluble organic compounds, insofar as they go into solution at 90% RH. Another advantage is the higher time resolution compared to using size-resolved chemical composition data.

Guyon, P, Graham B, Roberts GC, Mayol-Bracero OL, Maenhaut W, Artaxo P, Andreae MO.  2004.  Sources of optically active aerosol particles over the Amazon forest. Atmospheric Environment. 38:1039-1051.   10.1016/j.atmosenv.2003.10.051   AbstractWebsite

Size-fractionated ambient aerosol samples were collected at a pasture site and a primary rainforest site in the Brazilian Amazon Basin during two field campaigns (April-May and September-October 1999), as part of the European contribution to the Large-Scale Biosphere-Atmosphere Experiment in Amazonia (LBA-EUSTACH). The samples were analyzed for up to 19 trace elements by particle-induced X-ray emission analysis (PIXE), for equivalent black carbon (BCe) by a light reflectance technique and for mass concentration by gravimetric analysis. Additionally, we made continuous measurements of absorption and light scattering by aerosol particles. The vertical chemical composition gradients at the forest site have been discussed in a companion article (Journal of Geophysical Research-Atmospheres 108 (1318), 4591 (doi:4510.1029/2003JD003465)). In this article, we present the results of a source identification and quantitative apportionment study of the wet and dry season aerosols, including an apportionment of the measured scattering and absorption properties of the total aerosol in terms of the identified aerosol sources. Source apportionments (obtained from absolute principal component analysis) revealed that the wet and dry season aerosols contained the same three main components, but in different (absolute and relative) amounts: the wet season aerosol consisted mainly of a natural biogenic component, whereas pyrogenic aerosols dominated the dry season aerosol mass. The third component identified was soil dust, which was often internally mixed with the biomass-burning aerosol. All three components contributed significantly to light extinction during both seasons. At the pasture site, up to 47% of the light absorption was attributed to biogenic particles during the wet season, and up to 35% at the tower site during the wet-to-dry transition period. The results from the present study suggest that, in addition to pyrogenic particles, biogenic and soil dust aerosols must be taken into account when modeling the physical and optical properties of aerosols in forested regions such the Amazon Basin. (C) 2003 Published by Elsevier Ltd.

Conant, WC, VanReken TM, Rissman TA, Varutbangkul V, Jonsson HH, Nenes A, Jimenez JL, Delia AE, Bahreini R, Roberts GC, Flagan RC, Seinfeld JH.  2004.  Aerosol-cloud drop concentration closure in warm cumulus. Journal of Geophysical Research-Atmospheres. 109   10.1029/2003jd004324   AbstractWebsite

[1] Our understanding of the activation of aerosol particles into cloud drops during the formation of warm cumulus clouds presently has a limited observational foundation. Detailed observations of aerosol size and composition, cloud microphysics and dynamics, and atmospheric thermodynamic state were collected in a systematic study of 21 cumulus clouds by the Center for Interdisciplinary Remotely-Piloted Aircraft Studies (CIRPAS) Twin Otter aircraft during NASA's Cirrus Regional Study of Tropical Anvils and Cirrus Layers - Florida Area Cirrus Experiment (CRYSTAL-FACE). An "aerosol-cloud'' closure study was carried out in which a detailed cloud activation parcel model, which predicts cloud drop concentration using observed aerosol concentration, size distribution, cloud updraft velocity, and thermodynamic state, is evaluated against observations. On average, measured droplet concentration in adiabatic cloud regions is within 15% of the predictions. This agreement is corroborated by independent measurements of aerosol activation carried out by two cloud condensation nucleus (CCN) counters on the aircraft. Variations in aerosol concentration, which ranged from 300 to 3300 cm(-3), drives large microphysical differences ( 250 2300 cm(-3)) observed among continental and maritime clouds in the South Florida region. This is the first known study in which a cloud parcel model is evaluated in a closure study using a constraining set of data collected from a single platform. Likewise, this is the first known study in which relationships among aerosol size distribution, CCN spectrum, and cloud droplet concentration are all found to be consistent with theory within experimental uncertainties much less than 50%. Vertical profiles of cloud microphysical properties ( effective radius, droplet concentration, dispersion) clearly demonstrate the boundary layer aerosol's effect on cloud microphysics throughout the lowest 1 km of cloud depth. Onboard measurements of aerosol hygroscopic growth and the organic to sulfate mass ratio are related to CCN properties. These chemical data are used to quantify the range of uncertainty associated with the simplified treatment of aerosol composition assumed in the closure study.

Guyon, P, Graham B, Roberts GC, Mayol-Bracero OL, Maenhaut W, Artaxo P, Andreae MO.  2003.  In-canopy gradients, composition, sources, and optical properties of aerosol over the Amazon forest. Journal of Geophysical Research-Atmospheres. 108   10.1029/2003jd003465   AbstractWebsite

[1] As part of the Large-Scale Biosphere-Atmosphere Experiment in Amazonia-European Studies on Trace Gases and Atmospheric Chemistry (LBA-EUSTACH), size-fractionated aerosol samples were collected at a primary rain forest in the Brazilian Amazon during two field campaigns in April - May and September - October 1999. These two periods encompassed parts of the wet and dry seasons, respectively. Daytime-nighttime-segregated sampling was carried out at three different heights ( above, within, and below canopy level) on a 54-m meteorological tower at the forest site in order to better characterize the aerosol sources. The samples were analyzed for up to 19 trace elements by particle-induced X-ray emission analysis and for carbonaceous components by thermal-optical analysis. Equivalent black carbon (BCe) and gravimetric analyses were also performed. The average mass concentrations for particles < 2 μm diameter were 2.2 and 33.5 μg m(-3) for the wet and the dry seasons, respectively. The elements related to biomass burning and soil dust generally exhibited highest concentrations above the canopy and during daytime, while forest-derived aerosol was more concentrated underneath the canopy and during nighttime. These variations can be largely attributed to daytime convective mixing and the formation of a shallow nocturnal boundary layer, along with the possibility of enhanced nighttime release of biogenic aerosol particles. Mass scattering (α(s)) and mass absorption efficiency (α(a)) data indicate that scattering was dominated by fine aerosol, while fine and coarse aerosol both contributed significantly to absorption during both seasons. The data also suggest that components other than elemental carbon were responsible for a substantial fraction of the absorption.

Guyon, P, Boucher O, Graham B, Beck J, Mayol-Bracero OL, Roberts GC, Maenhaut W, Artaxo P, Andreae MO.  2003.  Refractive index of aerosol particles over the Amazon tropical forest during LBA-EUSTACH 1999. Journal of Aerosol Science. 34:883-907.   10.1016/s0021-8502(03)00052-1   AbstractWebsite

Optical properties of aerosol particles were characterized during two field campaigns at a remote rainforest site in Rond (o) over cap nia, Brazil, as part of the project European Studies on Trace Gases and Atmospheric Chemistry, a contribution to the Large-Scale Biosphere-Atmosphere Experiment in Amazonia (LBA-EUSTACH). The measurements included background (wet season), biomass burning (dry season), and transition period conditions. Optical measurements of light scattering and absorption were combined with data on number/size distributions in a new iterative method, which retrieves the effective imaginary refractive index of the particles at a wavelength of 545 nm. For ambient relative humidities lower than 80%, background aerosols exhibited an average refractive index of 1.42 - 0.006i. Biomass burning aerosols displayed a much larger imaginary part, with an average refractive index of 1.41 - 0.013i. Other climate-relevant parameters were estimated from Mie calculations. These include single-scattering albedos of 0.93 +/- 0.03 and 0.90 +/- 0.03 (at ambient humidity), asymmetry parameters of 0.63 +/- 0.02 and 0.70 +/- 0.03, and backscatter ratios of 0.12 +/- 0.01 and 0.08 +/- 0.01 for background and biomass burning aerosols, respectively. (C) 2003 Published by Elsevier Ltd.

Williams, E, Rosenfeld D, Madden N, Gerlach J, Gears N, Atkinson L, Dunnemann N, Frostrom G, Antonio M, Biazon B, Camargo R, Franca H, Gomes A, Lima M, Machado R, Manhaes S, Nachtigall L, Piva H, Quintiliano W, Machado L, Artaxo P, Roberts G, Renno N, Blakeslee R, Bailey J, Boccippio D, Betts A, Wolff D, Roy B, Halverson J, Rickenbach T, Fuentes J, Avelino E.  2002.  Contrasting convective regimes over the Amazon: Implications for cloud electrification. Journal of Geophysical Research-Atmospheres. 107   10.1029/2001jd000380   AbstractWebsite

Four distinct meteorological regimes in the Amazon basin have been examined to distinguish the contributions from boundary layer aerosol and convective available potential energy (CAPE) to continental cloud structure and electrification. The lack of distinction in the electrical parameters (peak flash rate, lightning yield per unit rainfall) between aerosol-rich October and aerosol-poor November in the premonsoon regime casts doubt on a primary role for the aerosol in enhancing cloud electrification. Evidence for a substantial role for the aerosol in suppressing warm rain coalescence is identified in the most highly polluted period in early October. The electrical activity in this stage is qualitatively peculiar. During the easterly and westerly wind regimes of the wet season, the lightning yield per unit of rainfall is positively correlated with the aerosol concentration, but the electrical parameters are also correlated with CAPE, with a similar degree of scatter. Here cause and effect are difficult to establish with available observations. This ambiguity extends to the "green ocean" westerly regime, a distinctly maritime regime over a major continent with minimum aerosol concentration, minimum CAPE, and little if any lightning.