Export 2 results:
Sort by: Author Title Type [ Year  (Desc)]
Claeys, M, Roberts G, Mallet M, Arndt J, Sellegri K, Sciare J, Wenger J, Sauvage B.  2017.  Optical, physical and chemical properties of aerosols transported to a coastal site in the western Mediterranean: a focus on primary marine aerosols. Atmospheric Chemistry and Physics. 17:7891-7915.   10.5194/acp-17-7891-2017   AbstractWebsite

As part of the ChArMEx-ADRIMED campaign (summer 2013), ground-based in situ observations were conducted at the Ersa site (northern tip of Corsica; 533 m a.s.l.) to characterise the optical, physical and chemical properties of aerosols. During the observation period, a major influence of primary marine aerosols was detected (22-26 June), with a mass concentration reaching up to 6.5 mu g m(-3) and representing more than 40% of the total PM10 mass concentration. Its relatively low ratio of chloride to sodium (average of 0.57) indicates a fairly aged sea salt aerosol at Ersa. In this work, an original data set, obtained from online real-time instruments (ATOFMS, PILS-IC) has been used to characterise the ageing of primary marine aerosols (PMAs). During this PMA period, the mixing of fresh and aged PMAs was found to originate from both local and regional (Gulf of Lion) emissions, according to local wind measurements and FLEXPART back trajectories. Two different aerosol regimes have been identified: a dust outbreak (dust) originating from Algeria/Tunisia, and a pollution period with aerosols originating from eastern Europe, which includes anthropogenic and biomass burning sources (BBP). The optical, physical and chemical properties of the observed aerosols, as well as their local shortwave (SW) direct radiative effect (DRE) in clear-sky conditions, are compared for these three periods in order to assess the importance of the direct radiative impact of PMAs compared to other sources above the western Mediterranean Basin. As expected, AERONET retrievals indicate a relatively low local SW DRF during the PMA period with mean values of -11 +/- 4 at the surface and -8 +/- 3W m(-2) at the top of the atmosphere (TOA). In comparison, our results indicate that the dust outbreak observed at our site during the campaign, although of moderate intensity (AOD of 0.3-0.4 at 440 nm and column-integrated SSA of 0.90-0.95), induced a local instantaneous SW DRF that is nearly 3 times the effect calculated during the PMA period, with maximum values up to -40 W m(-2) at the surface. A similar range of values were found for the BBP period to those during the dust period (SW DRF at the surface and TOA of -23 +/- 6 and -15 +/- 4 W m(-2) respectively). The multiple sources of measurements at Ersa allowed the detection of a PMA-dominant period and their characterisation in terms of ageing, origin, transport, optical and physical properties and direct climatic impact.

Modini, RL, Frossard AA, Ahlm L, Russell LM, Corrigan CE, Roberts GC, Hawkins LN, Schroder JC, Bertram AK, Zhao R, Lee AKY, Abbatt JPD, Lin J, Nenes A, Wang Z, Wonaschutz A, Sorooshian A, Noone KJ, Jonsson H, Seinfeld JH, Toom-Sauntry D, Macdonald AM, Leaitch WR.  2015.  Primary marine aerosol-cloud interactions off the coast of California. Journal of Geophysical Research-Atmospheres. 120:4282-4303.   10.1002/2014jd022963   AbstractWebsite

Primary marine aerosol (PMA)-cloud interactions off the coast of California were investigated using observations of marine aerosol, cloud condensation nuclei (CCN), and stratocumulus clouds during the Eastern Pacific Emitted Aerosol Cloud Experiment (E-PEACE) and the Stratocumulus Observations of Los-Angeles Emissions Derived Aerosol-Droplets (SOLEDAD) studies. Based on recently reported measurements of PMA size distributions, a constrained lognormal-mode-fitting procedure was devised to isolate PMA number size distributions from total aerosol size distributions and applied to E-PEACE measurements. During the 12 day E-PEACE cruise on the R/V Point Sur, PMA typically contributed less than 15% of total particle concentrations. PMA number concentrations averaged 12 cm(-3) during a relatively calmer period (average wind speed 12m/s(1)) lasting 8 days, and 71cm(-3) during a period of higher wind speeds (average 16m/s(1)) lasting 5 days. On average, PMA contributed less than 10% of total CCN at supersaturations up to 0.9% during the calmer period; however, during the higher wind speed period, PMA comprised 5-63% of CCN (average 16-28%) at supersaturations less than 0.3%. Sea salt was measured directly in the dried residuals of cloud droplets during the SOLEDAD study. The mass fractions of sea salt in the residuals averaged 12 to 24% during three cloud events. Comparing the marine stratocumulus clouds sampled in the two campaigns, measured peak supersaturations were 0.20.04% during E-PEACE and 0.05-0.1% during SOLEDAD. The available measurements show that cloud droplet number concentrations increased with >100 nm particles in E-PEACE but decreased in the three SOLEDAD cloud events.