Publications

Export 4 results:
Sort by: Author Title Type [ Year  (Desc)]
2016
Wex, H, Dieckmann K, Roberts GC, Conrath T, Izaguirre MA, Hartmann S, Herenz P, Schafer M, Ditas F, Schmeissner T, Henning S, Wehner B, Siebert H, Stratmann F.  2016.  Aerosol arriving on the Caribbean island of Barbados: physical properties and origin. Atmospheric Chemistry and Physics. 16:14107-14130.   10.5194/acp-16-14107-2016   AbstractWebsite

The marine aerosol arriving at Barbados (Ragged Point) was characterized during two 3-week long measurement periods in November 2010 and April 2011, in the context of the measurement campaign CARRIBA (Cloud, Aerosol, Radiation and tuRbulence in the trade wInd regime over BArbados). Through a comparison between ground-based and airborne measurements it was shown that the former are representative of the marine boundary layer at least up to cloud base. In general, total particle number concentrations (N-total) ranged from as low as 100 up to 800 cm(-3), while number concentrations for cloud condensation nuclei (N-CCN) at a supersaturation of 0.26% ranged from some 10 to 600 cm(-3). N-total and N-CCN depended on the air mass origin. Three distinct types of air masses were found. One type showed elevated values for both N-total and N-CCN and could be attributed to long-range transport from Africa, by which biomass burning particles from the Sahel region and/or mineral dust particles from the Sahara were advected. The second and third type both had values for N-CCN below 200 cm(-3) and a clear minimum in the particle number size distribution (NSD) around 70 to 80 nm (Hoppel minimum). While for one of these two types the accumulation mode was dominating (albeit less so than for air masses advected from Africa), the Aitken mode dominated the other and contributed more than 50% of all particles. These Aitken mode particles likely were formed by new particle formation no more than 3 days prior to the measurements. Hygroscopicity of particles in the CCN size range was determined from CCN measurements to be kappa = 0.66 on average, which suggests that these particles contain mainly sulfate and do not show a strong influence from organic material, which might generally be the case for the months during which measurements were made. The average kappa could be used to derive N-CCN from measured number size distributions, showing that this is a valid approach to obtain N-CCN. Although the total particulate mass sampled on filters was found to be dominated by Na+ and Cl-, this was found to be contributed by a small number of large particles (> 500 nm, mostly even in the super-micron size range). Based on a three-modal fit, a sea spray mode observed in the NSDs was found to contribute 90% to the total particulate mass but only 4 to 10% to N-total and up to 15% to N-CCN. This is in accordance with finding no correlation between N-total and wind speed.

2011
Creamean, JM, Ault AP, Ten Hoeve JE, Jacobson MZ, Roberts GC, Prather KA.  2011.  Measurements of aerosol chemistry during new particle formation events at a remote rural mountain site. Environmental Science & Technology. 45:8208-8216.   10.1021/es103692f   AbstractWebsite

Determining the major sources of particles that act as cloud condensation nuclei (CCN) represents a critical step in the development of a more fundamental understanding of aerosol impacts on cloud formation and climate. Reported herein are direct measurements of the CCN activity of newly formed ambient particles, measured at a remote rural site in the Sierra Nevada Mountains of Northern California. Nucleation events in the winter of 2009 occurred during two pristine periods following precipitation, with higher gas-phase SO(2) concentrations during the second period, when faster particle growth occurred (7-8 nm/h). Amines, as opposed to ammonia, and sulfate were detected in the particle phase throughout new particle formation (NPF) events, increasing in number as the particles grew to larger sizes. Interestingly, long-range transport of SO(2) from Asia appeared to potentially play a role in NPF during faster particle growth. Understanding the propensity of newly formed particles to act as CCN is critical for predicting the effects of NPF on orographic cloud formation during winter storms along the Sierra Nevada Mountain range. The potential impact of newly formed particles in remote regions needs to be compared with that of transported urban aerosols when evaluating the impact of aerosols on clouds and climate.

2005
Roberts, GC, Nenes A.  2005.  A continuous-flow streamwise thermal-gradient CCN chamber for atmospheric measurements. Aerosol Science and Technology. 39:206-221.   10.1080/027868290913988   AbstractWebsite

We have addressed the need for improved measurements of cloud condensation nuclei (CCN) by developing a continuous-flow instrument that provides in situ measurements of CCN. The design presented in this article can operate between 0.1 and 3% supersaturation, at sampling rates sufficient for airborne operation. The design constitutes a cylindrical continuous-flow thermal-gradient diffusion chamber employing a novel technique of generating a supersaturation: by establishing a constant streamwise temperature gradient so that the difference in water vapor and thermal diffusivity yield a quasi-uniform centerline supersaturation. Our design maximizes the growth rate of activated droplets, thereby enhancing the performance of the instrument. The temperature gradient and the flow through the column control the supersaturation and may be modified to retrieve CCN spectra. The principle of the CCN instrument was validated in controlled laboratory experiments at different operating conditions using a monodisperse aerosols with known composition and size. These experiments yield sharp activation curves, even for those kinetically limited particles that have not exceeded their critical diameter. The performance of the CCN instrument was also assessed using polydisperse laboratory-generated aerosol of known composition and size distributions similar to ambient particulate matter. In all tests, the measured CCN concentrations compared well with predicted values and highlight the instrument's ability to measure CCN at various size distributions. The full potential of the new design has yet to be explored; however, model simulations suggest that direct measurements in the climatically important range of supersaturations of less than 0.1% (certainly down to 0.07%) are possible. The new instrument clearly offers a unique level of design simplicity, robustness, and flexilibity (temperature control, large range of supersaturations without flow reversal, and multiple configurations for same supersaturation) necessary for atmospheric studies.

2004
Conant, WC, VanReken TM, Rissman TA, Varutbangkul V, Jonsson HH, Nenes A, Jimenez JL, Delia AE, Bahreini R, Roberts GC, Flagan RC, Seinfeld JH.  2004.  Aerosol-cloud drop concentration closure in warm cumulus. Journal of Geophysical Research-Atmospheres. 109   10.1029/2003jd004324   AbstractWebsite

[1] Our understanding of the activation of aerosol particles into cloud drops during the formation of warm cumulus clouds presently has a limited observational foundation. Detailed observations of aerosol size and composition, cloud microphysics and dynamics, and atmospheric thermodynamic state were collected in a systematic study of 21 cumulus clouds by the Center for Interdisciplinary Remotely-Piloted Aircraft Studies (CIRPAS) Twin Otter aircraft during NASA's Cirrus Regional Study of Tropical Anvils and Cirrus Layers - Florida Area Cirrus Experiment (CRYSTAL-FACE). An "aerosol-cloud'' closure study was carried out in which a detailed cloud activation parcel model, which predicts cloud drop concentration using observed aerosol concentration, size distribution, cloud updraft velocity, and thermodynamic state, is evaluated against observations. On average, measured droplet concentration in adiabatic cloud regions is within 15% of the predictions. This agreement is corroborated by independent measurements of aerosol activation carried out by two cloud condensation nucleus (CCN) counters on the aircraft. Variations in aerosol concentration, which ranged from 300 to 3300 cm(-3), drives large microphysical differences ( 250 2300 cm(-3)) observed among continental and maritime clouds in the South Florida region. This is the first known study in which a cloud parcel model is evaluated in a closure study using a constraining set of data collected from a single platform. Likewise, this is the first known study in which relationships among aerosol size distribution, CCN spectrum, and cloud droplet concentration are all found to be consistent with theory within experimental uncertainties much less than 50%. Vertical profiles of cloud microphysical properties ( effective radius, droplet concentration, dispersion) clearly demonstrate the boundary layer aerosol's effect on cloud microphysics throughout the lowest 1 km of cloud depth. Onboard measurements of aerosol hygroscopic growth and the organic to sulfate mass ratio are related to CCN properties. These chemical data are used to quantify the range of uncertainty associated with the simplified treatment of aerosol composition assumed in the closure study.