Publications

Export 4 results:
Sort by: Author Title Type [ Year  (Desc)]
2014
Werner, F, Ditas F, Siebert H, Simmel M, Wehner B, Pilewskie P, Schmeissner T, Shaw RA, Hartmann S, Wex H, Roberts GC, Wendisch M.  2014.  Twomey effect observed from collocated microphysical and remote sensing measurements over shallow cumulus. Journal of Geophysical Research-Atmospheres. 119:1534-1545.   10.1002/2013jd020131   AbstractWebsite

Clear experimental evidence of the Twomey effect for shallow trade wind cumuli near Barbados is presented. Effective droplet radius (r(eff)) and cloud optical thickness (), retrieved from helicopter-borne spectral cloud-reflected radiance measurements, and spectral cloud reflectivity () are correlated with collocated in situ observations of the number concentration of aerosol particles from the subcloud layer (N). N denotes the concentration of particles larger than 80 nm in diameter and represents particles in the activation mode. In situ cloud microphysical and aerosol parameters were sampled by the Airborne Cloud Turbulence Observation System (ACTOS). Spectral cloud-reflected radiance data were collected by the Spectral Modular Airborne Radiation measurement sysTem (SMART-HELIOS). With increasing N a shift in the probability density functions of and toward larger values is observed, while the mean values and observed ranges of retrieved r(eff) decrease. The relative susceptibilities (RS) of r(eff), , and to N are derived for bins of constant liquid water path. The resulting values of RS are in the range of 0.35 for r(eff) and , and 0.27 for . These results are close to the maximum susceptibility possible from theory. Overall, the shallow cumuli sampled near Barbados show characteristics of homogeneous, plane-parallel clouds. Comparisons of RS derived from in situ measured r(eff) and from a microphysical parcel model are in close agreement.

2009
Stith, JL, Ramanathan V, Cooper WA, Roberts GC, DeMott PJ, Carmichael G, Hatch CD, Adhikary B, Twohy CH, Rogers DC, Baumgardner D, Prenni AJ, Campos T, Gao R, Anderson J, Feng Y.  2009.  An overview of aircraft observations from the Pacific Dust Experiment campaign. Journal of Geophysical Research-Atmospheres. 114   10.1029/2008jd010924   AbstractWebsite

Fourteen research flights were conducted in the Pacific Dust Experiment (PACDEX) during April and May 2007 to sample pollution and dust outbreaks from east Asia as they traveled across the northern Pacific Ocean into North America and interacted with maritime storms. Significant concentrations of black carbon (BC, consisting of soot and other light-absorbing particles measured with a soot photometer 2 instrument) and dust were observed both in the west and east Pacific Ocean from Asian plumes of dust and pollution. BC particles were observed through much of the troposphere, but the major finding is that the percentage of these particles compared with the total number of accumulation mode particles increased significantly (by a factor of 2-4) with increasing altitude, with peak values occurring between 5 and 10 km. Dust plumes had only a small impact on total cloud condensation nuclei at the sampling supersaturations but did exhibit high concentrations of ice nuclei (IN). IN concentrations in dust plumes exceeded typical tropospheric values by 4-20 times and were similar to previous studies in the Saharan aerosol layer when differences in the number concentrations of dust are accounted for. Enhanced IN concentrations were found in the upper troposphere off the coast of North America, providing a first direct validation of the transport of high-IN-containing dust layers near the tropopause entering the North American continent from distant sources. A source-specific chemical transport model was used to predict dust and other aerosols during PACDEX. The model was able to predict several features of the in situ observations, including the general altitudes where BC was found and a peak in the ratio of BC to sulfate between 5 and 10 km.

2003
VanReken, TM, Rissman TA, Roberts GC, Varutbangkul V, Jonsson HH, Flagan RC, Seinfeld JH.  2003.  Toward aerosol/cloud condensation nuclei (CCN) closure during CRYSTAL-FACE. Journal of Geophysical Research-Atmospheres. 108   10.1029/2003jd003582   AbstractWebsite

[1] During July 2002, measurements of cloud condensation nuclei were made in the vicinity of southwest Florida as part of the Cirrus Regional Study of Tropical Anvils and Cirrus Layers-Florida Area Cirrus Experiment (CRYSTAL-FACE) field campaign. These observations, at supersaturations of 0.2 and 0.85%, are presented here. The performance of each of the two CCN counters was validated through laboratory calibration and an in situ intercomparison. The measurements indicate that the aerosol sampled during the campaign was predominantly marine in character: the median concentrations were 233 cm(-3) (at S = 0.2%) and 371 cm(-3) (at S = 0.85%). Three flights during the experiment differed from this general trend; the aerosol sampled during the two flights on 18 July was more continental in character, and the observations on 28 July indicate high spatial variability and periods of very high aerosol concentrations. This study also includes a simplified aerosol/CCN closure analysis. Aerosol size distributions were measured simultaneously with the CCN observations, and these data are used to predict a CCN concentration using Kohler theory. For the purpose of this analysis, an idealized composition of pure ammonium sulfate was assumed. The analysis indicates that in this case, there was good general agreement between the predicted and observed CCN concentrations: at S = 0.2%, N-predicted/N-observed = 1.047 (R-2 = 0.911); at S = 0.85%, N-predicted/N-observed = 1.201 (R-2 = 0.835). The impacts of the compositional assumption and of including in-cloud data in the analysis are addressed. The effect of removing the data from the 28 July flight is also examined; doing so improves the result of the closure analysis at S = 0.85%. When omitting that atypical flight, N-predicted/N-observed = 1.085 (R-2 = 0.770) at S = 0.85%.

1999
Kettle, AJ, Andreae MO, Amouroux D, Andreae TW, Bates TS, Berresheim H, Bingemer H, Boniforti R, Curran MAJ, DiTullio GR, Helas G, Jones GB, Keller MD, Kiene RP, Leck C, Levasseur M, Malin G, Maspero M, Matrai P, McTaggart AR, Mihalopoulos N, Nguyen BC, Novo A, Putaud JP, Rapsomanikis S, Roberts G, Schebeske G, Sharma S, Simo R, Staubes R, Turner S, Uher G.  1999.  A global database of sea surface dimethylsulfide (DMS) measurements and a procedure to predict sea surface DMS as a function of latitude, longitude, and month. Global Biogeochemical Cycles. 13:399-444.   10.1029/1999gb900004   AbstractWebsite

A database of 15,617 point measurements of dimethylsulfide (DMS) in surface waters along with lesser amounts of data for aqueous and particulate dimethylsulfoniopropionate concentration, chlorophyll concentration, sea surface salinity and temperature, and wind speed has been assembled. The database was processed to create a series of climatological annual and monthly 1 degrees x1 degrees latitude-longitude squares of data. The results were compared to published fields of geophysical and biological parameters. No significant correlation was found between DMS and these parameters, and no simple algorithm could be found to create monthly fields of sea surface DMS concentration based on these parameters. Instead, an annual map of sea surface DMS was produced using an algorithm similar to that employed by Conkright et al. [1994]. In this approach, a first-guess field of DMS sea surface concentration measurements is created and then a correction to this field is generated based on actual measurements. Monthly sea surface grids of DMS were obtained using a similar scheme, but the sparsity of DMS measurements made the method difficult to implement. A scheme was used which projected actual data into months of the year where no data were otherwise present.