Export 8 results:
Sort by: Author Title Type [ Year  (Desc)]
Juranyi, Z, Tritscher T, Gysel M, Laborde M, Gomes L, Roberts G, Baltensperger U, Weingartner E.  2013.  Hygroscopic mixing state of urban aerosol derived from size-resolved cloud condensation nuclei measurements during the MEGAPOLI campaign in Paris. Atmospheric Chemistry and Physics. 13:6431-6446.   10.5194/acp-13-6431-2013   AbstractWebsite

Ambient aerosols are a complex mixture of particles with different physical and chemical properties and consequently distinct hygroscopic behaviour. The hygroscopicity of a particle determines its water uptake at subsaturated relative humidity (RH) and its ability to form a cloud droplet at supersaturated RH. These processes influence Earth's climate and the atmospheric lifetime of the particles. Cloud condensation nuclei (CCN) number size distributions (i.e. CCN number concentrations as a function of dry particle diameter) were measured close to Paris during the MEGAPOLI campaign in January-February 2010, covering 10 different supersaturations (SS = 0.1-1.0%). The time-resolved hygroscopic mixing state with respect to CCN activation was also derived from these measurements. Simultaneously, a hygroscopicity tandem differential mobility analyser (HTDMA) was used to measure the hygroscopic growth factor (ratio of wet to dry mobility diameter) distributions at RH = 90%. The aerosol was highly externally mixed and its mixing state showed significant temporal variability. The average particle hygroscopicity was relatively low at subsaturation (RH = 90%; mean hygroscopicity parameter kappa = 0.12-0.27) and increased with increasing dry diameter in the range 35-265 nm. The mean kappa value, derived from the CCN measurements at supersaturation, ranged from 0.08 to 0.24 at SS = 1.0-0.1%. Two types of mixing-state resolved hygroscopicity closure studies were performed, comparing the water uptake ability measured below and above saturation. In the first type the CCN counter was connected in series with the HTDMA and and closure was achieved over the whole range of probed dry diameters, growth factors and supersaturations using the kappa-parametrization for the water activity and assuming surface tension of pure water in the Kohler theory. In the second closure type we compared hygroscopicity distributions derived from parallel monodisperse CCN measurements and HTDMA measurements. Very good agreement was found at all supersaturations, which shows that monodisperse CCN measurements are a reliable alternative to determine the hygroscopic mixing state of ambient aerosols.

Corrigan, CE, Roberts GC, Ramana MV, Kim D, Ramanathan V.  2008.  Capturing vertical profiles of aerosols and black carbon over the Indian Ocean using autonomous unmanned aerial vehicles. Atmospheric Chemistry and Physics. 8:737-747.   10.5194/acp-8-737-2008   AbstractWebsite

Measurements of the vertical distribution of aerosol properties provide essential information for generating more accurate model estimates of radiative forcing and atmospheric heating rates compared with employing remotely sensed column averaged properties. A month long campaign over the Indian Ocean during March 2006 investigated the interaction of aerosol, clouds, and radiative effects. Routine vertical profiles of aerosol and water vapor were determined using autonomous unmanned aerial vehicles equipped with miniaturized instruments. Comparisons of these airborne instruments with established ground-based instruments and in aircraft-to-aircraft comparisons demonstrated an agreement within 10%. Aerosol absorption optical depths measured directly using the unmanned aircraft differed from columnar AERONET sun-photometer results by only 20%. Measurements of total particle concentration, particle size distributions, aerosol absorption and black carbon concentrations are presented along with the trade wind thermodynamic structure from the surface to 3000 m above sea level. Early March revealed a well-mixed layer up to the cloud base at 500 m above mean sea level (m a.s.l.), followed by a decrease of aerosol concentrations with altitude. The second half of March saw the arrival of a high altitude plume existing above the mixed layer that originated from a continental source and increased aerosol concentrations by more than tenfold, yet the surface air mass showed little change in aerosol concentrations and was still predominantly influenced by marine sources. Black carbon concentrations at 1500 m above sea level increased from 70 ng/m(3) to more than 800 ng/m(3) with the arrival of this polluted plume. The absorption aerosol optical depth increased from as low as 0.005 to as much as 0.035 over the same period. The spectral dependence of the aerosol absorption revealed an absorption Angstrom exponent of 1.0, which is typical of an aerosol with most of its absorption attributed to black carbon and generally indicates the absorbing component originated from fossil fuel sources and other high-temperature combustion sources. The results indicate that surface measurements do not represent the aerosol properties within the elevated layers, especially if these layers are influenced by long range transport.

Roberts, G, Mauger G, Hadley O, Ramanathan V.  2006.  North American and Asian aerosols over the eastern Pacific Ocean and their role in regulating cloud condensation nuclei. Journal of Geophysical Research-Atmospheres. 111   10.1029/2005jd006661   AbstractWebsite

[ 1] Measurements of aerosol and cloud properties in the Eastern Pacific Ocean were taken during an airborne experiment on the University of Wyoming's King Air during April 2004 as part of the Cloud Indirect Forcing Experiment (CIFEX). We observed a wide variety of aerosols, including those of long-range transport from Asia, clean marine boundary layer, and North American emissions. These aerosols, classified by their size distribution and history, were found in stratified layers between 500 to 7500 m above sea level and thicknesses from 100 to 3000 m. A comparison of the aerosol size distributions to measurements of cloud condensation nuclei (CCN) provides insight to the CCN activity of the different aerosol types. The overall ratio of measured to predicted CCN concentration (NCCN) is 0.56 +/- 0.41 with a relationship of N-CCN,N- measured = N-CCN, predicted(0.846 +/- 0.002) for 23 research flights and 1884 comparisons. Such a relationship does not accurately describe a CCN closure; however, it is consistent with our measurements that high CCN concentrations are more influenced by anthropogenic sources, which are less CCN active. While other CCN closures have obtained results closer to the expected 1: 1 relationship, the different aerosol types ( and presumably differences in aerosol chemistry) are responsible for the discrepancy. The measured N-CCN at 0.3% supersaturation (S-c) ranged from 20 cm(-3) (pristine) to 350 cm(-3) ( anthropogenic) with an average of 106 +/- 54 cm(-3) over the experiment. The inferred supersaturation in the clouds sampled during this experiment is similar to 0.3%. CCN concentrations of cloud-processed aerosol were well predicted using an ammonium sulfate approximation for S-c <= 0.4%. Predicted N-CCN for other aerosol types (i.e., Asian and North American aerosols) were high compared to measured values indicating a less CCN active aerosol. This study highlights the importance of chemical effects on CCN measurements and introduces a CCN activation index as a method of classifying the efficiency of an aerosol to serve as CCN relative to an ammonium sulfate particle. This index ranged from close to unity for cloud processed aerosols to as low as 0.31 for aged aerosols transported from Asia. We also compare the performance of two CCN instruments ( static thermal diffusion chamber and streamwise continuous flow chamber) on a 45 minute level leg where we observe an aged layer and a nucleation event. More than 50% of the aged aerosol served as CCN at 0.2% S-c, primarily owing to their large size, while CCN concentrations during the nucleation event were close to 0 cm(-3). CCN concentrations from both instruments agreed within instrument errors; however, the continuous flow chamber effectively captured the rapid transition in aerosol properties.

Rissler, J, Swietlicki E, Zhou J, Roberts G, Andreae MO, Gatti LV, Artaxo P.  2004.  Physical properties of the sub-micrometer aerosol over the Amazon rain forest during the wet-to-dry season transition - comparison of modeled and measured CCN concentrations. Atmospheric Chemistry and Physics. 4:2119-2143.   10.5194/acp-4-2119-2004   AbstractWebsite

Sub-micrometer atmospheric aerosol particles were studied in the Amazon region, 125 km northeast of Manaus, Brazil (-1degrees55.2'S, 59degrees28.1'W). The measurements were performed during the wet-to-dry transition period, 4-28 July 2001 as part of the LBA (Large-Scale Biosphere Atmosphere Experiment in Amazonia) CLAIRE-2001 (Cooperative LBA Airborne Regional Experiment) experiment. The number size distribution was measured with two parallel differential mobility analyzers, the hygroscopic growth at 90% RH with a Hygroscopic Tandem Mobility Analyzer (H-TDMA) and the concentrations of cloud condensation nuclei (CCN) with a cloud condensation nuclei counter. A model was developed that uses the H-TDMA data to predict the number of soluble molecules or ions in the individual particles and the corresponding minimum particle diameter for activation into a cloud droplet at a certain supersaturation. Integrating the number size distribution above this diameter, CCN concentrations were predicted with a time resolution of 10 min and compared to the measured concentrations. During the study period, three different air masses were identified and compared: clean background, air influenced by aged biomass burning, and moderately polluted air from recent local biomass burning. For the clean period 2001, similar number size distributions and hygroscopic behavior were observed as during the wet season at the same site in 1998, with mostly internally mixed particles of low diameter growth factor (similar to1.3 taken from dry to 90% RH). During the periods influenced by biomass burning the hygroscopic growth changed slightly, but the largest difference was seen in the number size distribution. The CCN model was found to be successful in predicting the measured CCN concentrations, typically within 25%. A sensitivity study showed relatively small dependence on the assumption of which model salt that was used to predict CCN concentrations from H-TDMA data. One strength of using H-TDMA data to predict CCN concentrations is that the model can also take into account soluble organic compounds, insofar as they go into solution at 90% RH. Another advantage is the higher time resolution compared to using size-resolved chemical composition data.

Guyon, P, Graham B, Beck J, Boucher O, Gerasopoulos E, Mayol-Bracero OL, Roberts GC, Artaxo P, Andreae MO.  2003.  Physical properties and concentration of aerosol particles over the Amazon tropical forest during background and biomass burning conditions. Atmospheric Chemistry and Physics. 3:951-967.   10.5194/acp-3-951-2003   AbstractWebsite

We investigated the size distribution, scattering and absorption properties of Amazonian aerosols and the optical thickness of the aerosol layer under the pristine background conditions typical of the wet season, as well as during the biomass-burning-influenced dry season. The measurements were made during two campaigns in 1999 as part of the European contribution to the Large-Scale BiosphereAtmosphere Experiment in Amazonia (LBA-EUSTACH). In moving from the wet to the dry season, median particle numbers were observed to increase from values comparable to those of the remote marine boundary layer (similar to400 cm(-3)) to values more commonly associated with urban smog (similar to4000 cm(-3)), due to a massive injection of submicron smoke particles. Aerosol optical depths at 500 nm increased from 0.05 to 0.8 on average, reaching a value of 2 during the dry season. Scattering and absorption coefficients, measured at 550 nm, showed a concomitant increase from average values of 6.8 and 0.4 Mm(-1) to values of 91 and 10 Mm(-1), respectively, corresponding to an estimated decrease in single-scattering albedo from ca. 0.97 to 0.91. The roughly tenfold increase in many of the measured parameters attests to the dramatic effect that extensive seasonal biomass burning (deforestation, pasture cleaning) is having on the composition and properties of aerosols over Amazonia. The potential exists for these changes to impact on regional and global climate through changes to the extinction of solar radiation as well as the alteration of cloud properties.

Guyon, P, Boucher O, Graham B, Beck J, Mayol-Bracero OL, Roberts GC, Maenhaut W, Artaxo P, Andreae MO.  2003.  Refractive index of aerosol particles over the Amazon tropical forest during LBA-EUSTACH 1999. Journal of Aerosol Science. 34:883-907.   10.1016/s0021-8502(03)00052-1   AbstractWebsite

Optical properties of aerosol particles were characterized during two field campaigns at a remote rainforest site in Rond (o) over cap nia, Brazil, as part of the project European Studies on Trace Gases and Atmospheric Chemistry, a contribution to the Large-Scale Biosphere-Atmosphere Experiment in Amazonia (LBA-EUSTACH). The measurements included background (wet season), biomass burning (dry season), and transition period conditions. Optical measurements of light scattering and absorption were combined with data on number/size distributions in a new iterative method, which retrieves the effective imaginary refractive index of the particles at a wavelength of 545 nm. For ambient relative humidities lower than 80%, background aerosols exhibited an average refractive index of 1.42 - 0.006i. Biomass burning aerosols displayed a much larger imaginary part, with an average refractive index of 1.41 - 0.013i. Other climate-relevant parameters were estimated from Mie calculations. These include single-scattering albedos of 0.93 +/- 0.03 and 0.90 +/- 0.03 (at ambient humidity), asymmetry parameters of 0.63 +/- 0.02 and 0.70 +/- 0.03, and backscatter ratios of 0.12 +/- 0.01 and 0.08 +/- 0.01 for background and biomass burning aerosols, respectively. (C) 2003 Published by Elsevier Ltd.

Roberts, GC, Andreae MO, Maenhaut W, Fernandez-Jimenez MT.  2001.  Composition and sources of aerosol in a central African rain forest during the dry season. Journal of Geophysical Research-Atmospheres. 106:14423-14434.   10.1029/2000jd900774   AbstractWebsite

During the Experiment for Regional Sources and Sinks of Oxidants (EXPRESSO-96), size-fractionated aerosol samples were collected in November and December 1996 at a ground site in the tropical rain forest at the N'doki National Park (NNP) in the Republic of Congo. The samples were analyzed for up to 26 elements using particle-induced X-ray emission. Elements related to mineral dust and pyrogenic aerosol exhibited greater concentrations during the daytime, while aerosol produced by the rain forest exhibited higher concentrations at night. Samples were also collected at two levels on the tower, above and below the canopy, to characterize vegetation sources. Absolute principal component analysis (APCA) identified three major aerosol source types in each size fraction, which explained more than 90% of the data variance. The fine-size fraction contained mineral dust (Al, Si, Ca, Ti, and Fe), pyrogenic (black carbon, K, and Zn), and marine/anthropogenic sulfur components. The coarse-size fraction included a mineral dust (Al, Si, Ca, Ti, Mn, and Fe) and two primary biogenic components consisting of K, P, Zn, and S. Absolute principal component scores were calculated for the components of APCA, and temporal trends were compared to 7 day isopycnic backward trajectories. Consistent relationships between the temporal trends of the fine fraction aerosol components and meteorological patterns were observed. Trade wind air masses transported biomass burning and mineral dust aerosol to NNP during the first half of the experiment. The fine fraction sulfur component correlated well with the pyrogenic activity before the change in meteorological patterns halfway through the experiment. The fine and coarse sulfur concentrations nearly doubled in the latter part of the experiment as a monsoon circulation brought sulfur-enriched aerosol from the Atlantic Ocean. Various industrial activities on the coast of Cameroon and Gabon probably contributed to the high sulfur concentrations as well.

Formenti, P, Andreae MO, Lange L, Roberts G, Cafmeyer J, Rajta I, Maenhaut W, Holben BN, Artaxo P, Lelieveld J.  2001.  Saharan dust in Brazil and Suriname during the Large-Scale Biosphere-Atmosphere Experiment in Amazonia (LBA) - Cooperative LBA Regional Experiment (CLAIRE) in March 1998. Journal of Geophysical Research-Atmospheres. 106:14919-14934.   10.1029/2000jd900827   AbstractWebsite

Advection of Saharan dust was observed via chemical and optical measurements during March 1998 in Brazil and Suriname during the Large-Scale Biosphere-Atmosphere Experiment in Amazonia (LBA)-Cooperative LBA Airborne Regional Experiment (CLAIRE)-98 experiment. In Brazil the dust outbreak produced an increase of a factor of 3 in the daily mean mass concentration (up to 26 +/- 7 mug m(-3)) of particles smaller than 10 mum equivalent aerodynamic diameter (EAD), and in the daily mean aerosol particle scattering coefficient sigma (N) (up to 26 +/- 8 Mm(-1) STP, ambient humidity). Background levels of aerosol scattering (ambient) were sigma (s) similar to 10 Mm(-1). The effect of dust advection was evident for all major crustal elements (Al, Si, Ca, Ti, Mn, and Fe), as well as the sea-salt elements (Na, Cl, and S), as the dust layer was transported at low altitude (below 800 hPa). Coarse P and organic carbon (OC) concentrations were not influenced by the occurrence of dust, and were mainly emitted by the rain forest. The dry scattering mass efficiency of dust (particles smaller than 10 mum EAD) was estimated to be between 0.65 (+/- 0.06) and 0.89 (+/- 0.08) m(2) g(-1). Airborne profiles of aerosol scattering showed two distinct types of vertical structure in the dust layer over Suriname, either vertically uniform (15, 26 March), or plume-like (25 March). Dust layers extended generally up to 700 hPa, while scattering layers occasionally encountered at higher altitudes resulted from smoke emitted by biomass burning in Venezuela and Colombia, Observations in South America were supported by measurements in Israel and Tenerife (Canary Islands), where the dust outbreaks were also detected.