Publications

Export 4 results:
Sort by: [ Author  (Desc)] Title Type Year
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z   [Show ALL]
R
Rissler, J, Swietlicki E, Zhou J, Roberts G, Andreae MO, Gatti LV, Artaxo P.  2004.  Physical properties of the sub-micrometer aerosol over the Amazon rain forest during the wet-to-dry season transition - comparison of modeled and measured CCN concentrations. Atmospheric Chemistry and Physics. 4:2119-2143.   10.5194/acp-4-2119-2004   AbstractWebsite

Sub-micrometer atmospheric aerosol particles were studied in the Amazon region, 125 km northeast of Manaus, Brazil (-1degrees55.2'S, 59degrees28.1'W). The measurements were performed during the wet-to-dry transition period, 4-28 July 2001 as part of the LBA (Large-Scale Biosphere Atmosphere Experiment in Amazonia) CLAIRE-2001 (Cooperative LBA Airborne Regional Experiment) experiment. The number size distribution was measured with two parallel differential mobility analyzers, the hygroscopic growth at 90% RH with a Hygroscopic Tandem Mobility Analyzer (H-TDMA) and the concentrations of cloud condensation nuclei (CCN) with a cloud condensation nuclei counter. A model was developed that uses the H-TDMA data to predict the number of soluble molecules or ions in the individual particles and the corresponding minimum particle diameter for activation into a cloud droplet at a certain supersaturation. Integrating the number size distribution above this diameter, CCN concentrations were predicted with a time resolution of 10 min and compared to the measured concentrations. During the study period, three different air masses were identified and compared: clean background, air influenced by aged biomass burning, and moderately polluted air from recent local biomass burning. For the clean period 2001, similar number size distributions and hygroscopic behavior were observed as during the wet season at the same site in 1998, with mostly internally mixed particles of low diameter growth factor (similar to1.3 taken from dry to 90% RH). During the periods influenced by biomass burning the hygroscopic growth changed slightly, but the largest difference was seen in the number size distribution. The CCN model was found to be successful in predicting the measured CCN concentrations, typically within 25%. A sensitivity study showed relatively small dependence on the assumption of which model salt that was used to predict CCN concentrations from H-TDMA data. One strength of using H-TDMA data to predict CCN concentrations is that the model can also take into account soluble organic compounds, insofar as they go into solution at 90% RH. Another advantage is the higher time resolution compared to using size-resolved chemical composition data.

H
Hadley, OL, Ramanathan V, Carmichael GR, Tang Y, Corrigan CE, Roberts GC, Mauger GS.  2007.  Trans-Pacific transport of black carbon and fine aerosols (D < 2.5 ┬Ám) into North America. Journal of Geophysical Research-Atmospheres. 112   10.1029/2006jd007632   AbstractWebsite

[1] This study presents estimates of long-range transport of black carbon (BC) and aerosol fine mass (diameter less than 2.5 mm) across the Pacific Ocean into North America during April 2004. These transport estimates are based on simulations by the Chemical Weather Forecast System (CFORS) model and evaluated across 130 degrees W, (30 degrees N-60 degrees N) from 26 March through 25 April 2004. CFORS calculates BC transport into North America at 25-32 Gg of which over 75% originates from Asia. Modeled fine aerosol mass transport is between 900 and 1100 Gg. The BC transport amounts to about 77% of the published estimates of North American BC emissions. Approximately 78% of the BC and 82% of the fine aerosol mass transport occur in the midtroposphere above 2 km. Given the relatively large magnitude of the estimated BC transport, we undertake a detailed validation of the model simulations of fine aerosol mass and BC over the west coast of North America. In situ aircraft data were available for the month of April 2004 to assess the accuracy of model simulations of aerosols in the lower troposphere. Aircraft data for aerosol mass collected in the eastern Pacific Ocean during April 2004 as part of the Cloud Indirect Forcing Experiment, as well as surface measurements of fine mass and BC at 30 west coast locations, are compared to CFORS predictions. These surface sites are part of the Interagency Monitoring of Protected Visual Environments (IMPROVE) network. Both the aircraft and the IMPROVE data sets reveal similar patterns of good agreement near and above the boundary layer accompanied by large overprediction within the boundary layer. The observational data validate the CFORS simulations of BC and fine aerosol mass above the boundary layer. The near-surface overprediction does not impair the major conclusions of this study regarding long-range aerosol and BC transport, as most of the long-range transport occurs above 2 km. From this we conclude that the transport of BC from Asia and other regions west is a major source of BC at high elevations over North America. The simulated concentrations of BC between 1 and 3 km, as well as the measured BC concentrations over the elevated IMPROVE sites, range from 0.1 to 0.3 mu g/m(3). Direct radiative forcing over North America due to the modeled BC concentration between 1 and 15 km is estimated at an additional 2.04-2.55 W/m(2) absorbed in the atmosphere and a dimming of-1.45 to-1.47 W/m(2) at the surface. The impact of transported BC on the regional radiation budget through direct and indirect effects of the transported BC and other aerosols warrants further study.

G
Guyon, P, Boucher O, Graham B, Beck J, Mayol-Bracero OL, Roberts GC, Maenhaut W, Artaxo P, Andreae MO.  2003.  Refractive index of aerosol particles over the Amazon tropical forest during LBA-EUSTACH 1999. Journal of Aerosol Science. 34:883-907.   10.1016/s0021-8502(03)00052-1   AbstractWebsite

Optical properties of aerosol particles were characterized during two field campaigns at a remote rainforest site in Rond (o) over cap nia, Brazil, as part of the project European Studies on Trace Gases and Atmospheric Chemistry, a contribution to the Large-Scale Biosphere-Atmosphere Experiment in Amazonia (LBA-EUSTACH). The measurements included background (wet season), biomass burning (dry season), and transition period conditions. Optical measurements of light scattering and absorption were combined with data on number/size distributions in a new iterative method, which retrieves the effective imaginary refractive index of the particles at a wavelength of 545 nm. For ambient relative humidities lower than 80%, background aerosols exhibited an average refractive index of 1.42 - 0.006i. Biomass burning aerosols displayed a much larger imaginary part, with an average refractive index of 1.41 - 0.013i. Other climate-relevant parameters were estimated from Mie calculations. These include single-scattering albedos of 0.93 +/- 0.03 and 0.90 +/- 0.03 (at ambient humidity), asymmetry parameters of 0.63 +/- 0.02 and 0.70 +/- 0.03, and backscatter ratios of 0.12 +/- 0.01 and 0.08 +/- 0.01 for background and biomass burning aerosols, respectively. (C) 2003 Published by Elsevier Ltd.

C
Conant, WC, VanReken TM, Rissman TA, Varutbangkul V, Jonsson HH, Nenes A, Jimenez JL, Delia AE, Bahreini R, Roberts GC, Flagan RC, Seinfeld JH.  2004.  Aerosol-cloud drop concentration closure in warm cumulus. Journal of Geophysical Research-Atmospheres. 109   10.1029/2003jd004324   AbstractWebsite

[1] Our understanding of the activation of aerosol particles into cloud drops during the formation of warm cumulus clouds presently has a limited observational foundation. Detailed observations of aerosol size and composition, cloud microphysics and dynamics, and atmospheric thermodynamic state were collected in a systematic study of 21 cumulus clouds by the Center for Interdisciplinary Remotely-Piloted Aircraft Studies (CIRPAS) Twin Otter aircraft during NASA's Cirrus Regional Study of Tropical Anvils and Cirrus Layers - Florida Area Cirrus Experiment (CRYSTAL-FACE). An "aerosol-cloud'' closure study was carried out in which a detailed cloud activation parcel model, which predicts cloud drop concentration using observed aerosol concentration, size distribution, cloud updraft velocity, and thermodynamic state, is evaluated against observations. On average, measured droplet concentration in adiabatic cloud regions is within 15% of the predictions. This agreement is corroborated by independent measurements of aerosol activation carried out by two cloud condensation nucleus (CCN) counters on the aircraft. Variations in aerosol concentration, which ranged from 300 to 3300 cm(-3), drives large microphysical differences ( 250 2300 cm(-3)) observed among continental and maritime clouds in the South Florida region. This is the first known study in which a cloud parcel model is evaluated in a closure study using a constraining set of data collected from a single platform. Likewise, this is the first known study in which relationships among aerosol size distribution, CCN spectrum, and cloud droplet concentration are all found to be consistent with theory within experimental uncertainties much less than 50%. Vertical profiles of cloud microphysical properties ( effective radius, droplet concentration, dispersion) clearly demonstrate the boundary layer aerosol's effect on cloud microphysics throughout the lowest 1 km of cloud depth. Onboard measurements of aerosol hygroscopic growth and the organic to sulfate mass ratio are related to CCN properties. These chemical data are used to quantify the range of uncertainty associated with the simplified treatment of aerosol composition assumed in the closure study.