Export 19 results:
Sort by: Author Title [ Type  (Asc)] Year
Journal Article
Williams, E, Rosenfeld D, Madden N, Gerlach J, Gears N, Atkinson L, Dunnemann N, Frostrom G, Antonio M, Biazon B, Camargo R, Franca H, Gomes A, Lima M, Machado R, Manhaes S, Nachtigall L, Piva H, Quintiliano W, Machado L, Artaxo P, Roberts G, Renno N, Blakeslee R, Bailey J, Boccippio D, Betts A, Wolff D, Roy B, Halverson J, Rickenbach T, Fuentes J, Avelino E.  2002.  Contrasting convective regimes over the Amazon: Implications for cloud electrification. Journal of Geophysical Research-Atmospheres. 107   10.1029/2001jd000380   AbstractWebsite

Four distinct meteorological regimes in the Amazon basin have been examined to distinguish the contributions from boundary layer aerosol and convective available potential energy (CAPE) to continental cloud structure and electrification. The lack of distinction in the electrical parameters (peak flash rate, lightning yield per unit rainfall) between aerosol-rich October and aerosol-poor November in the premonsoon regime casts doubt on a primary role for the aerosol in enhancing cloud electrification. Evidence for a substantial role for the aerosol in suppressing warm rain coalescence is identified in the most highly polluted period in early October. The electrical activity in this stage is qualitatively peculiar. During the easterly and westerly wind regimes of the wet season, the lightning yield per unit of rainfall is positively correlated with the aerosol concentration, but the electrical parameters are also correlated with CAPE, with a similar degree of scatter. Here cause and effect are difficult to establish with available observations. This ambiguity extends to the "green ocean" westerly regime, a distinctly maritime regime over a major continent with minimum aerosol concentration, minimum CAPE, and little if any lightning.

Moore, MJK, Furutani H, Roberts GC, Moffet RC, Gilles MK, Palenik B, Prather KA.  2011.  Effect of organic compounds on cloud condensation nuclei (CCN) activity of sea spray aerosol produced by bubble bursting. Atmospheric Environment. 45:7462-7469.   10.1016/j.atmosenv.2011.04.034   AbstractWebsite

The ocean comprises over 70% of the surface of the earth and thus sea spray aerosols generated by wave processes represent a critical component of our climate system. The manner in which different complex oceanic mixtures of organic species and inorganic salts are distributed between individual particles in sea spray directly determines which particles will effectively form cloud nuclei. Controlled laboratory experiments were undertaken to better understand the full range of particle properties produced by bubbling solutions composed of simplistic model organic species, oleic acid and sodium dodecyl sulfate (SDS), mixed with NaCl to more complex artificial seawater mixed with complex organic mixtures produced by common oceanic microorganisms. Simple mixtures of NaCl and oleic acid or SDS had a significant effect on CCN activity, even in relatively small amounts. However, an artificial seawater (ASW) solution containing microorganisms, the common cyanobacteria (Synechococcus) and DMS-producing green algae (Ostreococcus), produced particles containing similar to 34 times more carbon than the particles produced from pure ASW, yet no significant change was observed in the overall CCN activity. We hypothesize that these microorganisms produce diverse mixtures of organic species with a wide range of properties that produced offsetting effects, leading to no net change in the overall average measured hygroscopicity of the collection of sea spray particles. Based on these observations, changes in CCN activity due to "bloom" conditions would be predicted to lead to small changes in the average CCN activity, and thus have a negligible impact on cloud formation. However, each sea spray particle will contain a broad spectrum of different species, and thus further studies are needed of the CCN activity of individual sea spray particles and biological processes under a wide range of controllable conditions. (C) 2011 Published by Elsevier Ltd.

Kulmala, M, Asmi A, Lappalainen HK, Baltensperger U, Brenguier JL, Facchini MC, Hansson HC, Hov O, O'Dowd CD, Poschl U et al..  2011.  General overview: European Integrated project on Aerosol Cloud Climate and Air Quality interactions (EUCAARI) - integrating aerosol research from nano to global scales. Atmos Chem Phys. 11:13061-13143.   doi:10.5194/acp-11-13061-2011   Abstract

In this paper we describe and summarize the main achievements of the European Aerosol Cloud Climate and Air Quality Interactions project (EUCAARI). EUCAARI started on 1 January 2007 and ended on 31 December 2010 leaving a rich legacy including: (a) a comprehensive database with a year of observations of the physical, chemical and optical properties of aerosol particles over Europe, (b) comprehensive aerosol measurements in four developing countries, (c) a database of airborne measurements of aerosols and clouds over Europe during May 2008, (d) comprehensive modeling tools to study aerosol processes fron nano to global scale and their effects on climate and air quality. In addition a new Pan-European aerosol emissions inventory was developed and evaluated, a new cluster spectrometer was built and tested in the field and several new aerosol parameterizations and computations modules for chemical transport and global climate models were developed and evaluated. These achievements and related studies have substantially improved our understanding and reduced the uncertainties of aerosol radiative forcing and air quality-climate interactions. The EUCAARI results can be utilized in European and global environmental policy to assess the aerosol impacts and the corresponding abatement strategies.

Juranyi, Z, Tritscher T, Gysel M, Laborde M, Gomes L, Roberts G, Baltensperger U, Weingartner E.  2013.  Hygroscopic mixing state of urban aerosol derived from size-resolved cloud condensation nuclei measurements during the MEGAPOLI campaign in Paris. Atmospheric Chemistry and Physics. 13:6431-6446.   10.5194/acp-13-6431-2013   AbstractWebsite

Ambient aerosols are a complex mixture of particles with different physical and chemical properties and consequently distinct hygroscopic behaviour. The hygroscopicity of a particle determines its water uptake at subsaturated relative humidity (RH) and its ability to form a cloud droplet at supersaturated RH. These processes influence Earth's climate and the atmospheric lifetime of the particles. Cloud condensation nuclei (CCN) number size distributions (i.e. CCN number concentrations as a function of dry particle diameter) were measured close to Paris during the MEGAPOLI campaign in January-February 2010, covering 10 different supersaturations (SS = 0.1-1.0%). The time-resolved hygroscopic mixing state with respect to CCN activation was also derived from these measurements. Simultaneously, a hygroscopicity tandem differential mobility analyser (HTDMA) was used to measure the hygroscopic growth factor (ratio of wet to dry mobility diameter) distributions at RH = 90%. The aerosol was highly externally mixed and its mixing state showed significant temporal variability. The average particle hygroscopicity was relatively low at subsaturation (RH = 90%; mean hygroscopicity parameter kappa = 0.12-0.27) and increased with increasing dry diameter in the range 35-265 nm. The mean kappa value, derived from the CCN measurements at supersaturation, ranged from 0.08 to 0.24 at SS = 1.0-0.1%. Two types of mixing-state resolved hygroscopicity closure studies were performed, comparing the water uptake ability measured below and above saturation. In the first type the CCN counter was connected in series with the HTDMA and and closure was achieved over the whole range of probed dry diameters, growth factors and supersaturations using the kappa-parametrization for the water activity and assuming surface tension of pure water in the Kohler theory. In the second closure type we compared hygroscopicity distributions derived from parallel monodisperse CCN measurements and HTDMA measurements. Very good agreement was found at all supersaturations, which shows that monodisperse CCN measurements are a reliable alternative to determine the hygroscopic mixing state of ambient aerosols.

Kuhn, U, Ganzeveld L, Thielmann A, Dindorf T, Schebeske G, Welling M, Sciare J, Roberts G, Meixner FX, Kesselmeier J, Lelieveld J, Kolle O, Ciccioli P, Lloyd J, Trentmann J, Artaxo P, Andreae MO.  2010.  Impact of Manaus City on the Amazon Green Ocean atmosphere: ozone production, precursor sensitivity and aerosol load. Atmospheric Chemistry and Physics. 10:9251-9282.   10.5194/acp-10-9251-2010   AbstractWebsite

As a contribution to the Large-Scale Biosphere-Atmosphere Experiment in Amazonia - Cooperative LBA Airborne Regional Experiment (LBA-CLAIRE-2001) field campaign in the heart of the Amazon Basin, we analyzed the temporal and spatial dynamics of the urban plume of Manaus City during the wet-to-dry season transition period in July 2001. During the flights, we performed vertical stacks of crosswind transects in the urban outflow downwind of Manaus City, measuring a comprehensive set of trace constituents including O-3, NO, NO2, CO, VOC, CO2, and H2O. Aerosol loads were characterized by concentrations of total aerosol number (CN) and cloud condensation nuclei (CCN), and by light scattering properties. Measurements over pristine rainforest areas during the campaign showed low levels of pollution from biomass burning or industrial emissions, representative of wet season background conditions. The urban plume of Manaus City was found to be joined by plumes from power plants south of the city, all showing evidence of very strong photochemical ozone formation. One episode is discussed in detail, where a threefold increase in ozone mixing ratios within the atmospheric boundary layer occurred within a 100 km travel distance downwind of Manaus. Observation-based estimates of the ozone production rates in the plume reached 15 ppb h(-1). Within the plume core, aerosol concentrations were strongly enhanced, with Delta CN/Delta CO ratios about one order of magnitude higher than observed in Amazon biomass burning plumes. Delta CN/Delta CO ratios tended to decrease with increasing transport time, indicative of a significant reduction in particle number by coagulation, and without substantial new particle nucleation occurring within the time/space observed. While in the background atmosphere a large fraction of the total particle number served as CCN (about 60-80% at 0.6% supersaturation), the CCN/CN ratios within the plume indicated that only a small fraction (16 +/- 12 %) of the plume particles were CCN. The fresh plume aerosols showed relatively weak light scattering efficiency. The CO-normalized CCN concentrations and light scattering coefficients increased with plume age in most cases, suggesting particle growth by condensation of soluble organic or inorganic species. We used a Single Column Chemistry and Transport Model (SCM) to infer the urban pollution emission fluxes of Manaus City, implying observed mixing ratios of CO, NOx and VOC. The model can reproduce the temporal/spatial distribution of ozone enhancements in the Manaus plume, both with and without accounting for the distinct (high NOx) contribution by the power plants; this way examining the sensitivity of ozone production to changes in the emission rates of NOx. The VOC reactivity in the Manaus region was dominated by a high burden of biogenic isoprene from the background rainforest atmosphere, and therefore NOx control is assumed to be the most effective ozone abatement strategy. Both observations and models show that the agglomeration of NOx emission sources, like power plants, in a well-arranged area can decrease the ozone production efficiency in the near field of the urban populated cores. But on the other hand remote areas downwind of the city then bear the brunt, being exposed to increased ozone production and N-deposition. The simulated maximum stomatal ozone uptake fluxes were 4 nmol m(-2) s(-1) close to Manaus, and decreased only to about 2 nmol m(-2) s(-1) within a travel distance >1500 km downwind from Manaus, clearly exceeding the critical threshold level for broadleaf trees. Likewise, the simulated N deposition close to Manaus was similar to 70 kg N ha(-1) a(-1) decreasing only to about 30 kg N ha(-1) a(-1) after three days of simulation.

Collins, DB, Ault AP, Moffet RC, Ruppel MJ, Cuadra-Rodriguez LA, Guasco TL, Corrigan CE, Pedler BE, Azam F, Aluwihare LI, Bertram TH, Roberts GC, Grassian VH, Prather KA.  2013.  Impact of marine biogeochemistry on the chemical mixing state and cloud forming ability of nascent sea spray aerosol. Journal of Geophysical Research-Atmospheres. 118:8553-8565.   10.1002/jgrd.50598   AbstractWebsite

The composition and properties of sea spray aerosol, a major component of the atmosphere, are often controlled by marine biological activity; however, the scope of impacts that ocean chemistry has on the ability for sea spray aerosol to act as cloud condensation nuclei (CCN) is not well understood. In this study, we utilize a mesocosm experiment to investigate the impact of marine biogeochemical processes on the composition and mixing state of sea spray aerosol particles with diameters<0.2 mu m produced by controlled breaking waves in a unique ocean-atmosphere facility. An increase in relative abundance of a distinct, insoluble organic particle type was observed after concentrations of heterotrophic bacteria increased in the seawater, leading to an 86 +/- 5% reduction in the hygroscopicity parameter () at 0.2% supersaturation. Aerosol size distributions showed very little change and the submicron organic mass fraction increased by less than 15% throughout the experiment; as such, neither of these typical metrics can explain the observed reduction in hygroscopicity. Predictions of the hygroscopicity parameter that make the common assumption that all particles have the same bulk organic volume fractions lead to overpredictions of CCN concentrations by 25% in these experiments. Importantly, key changes in sea spray aerosol mixing state that ultimately influenced CCN activity were driven by bacteria-mediated alterations to the organic composition of seawater.

Baumgardner, D, Avallone L, Bansemer A, Borrmann S, Brown P, Bundke U, Chuang PY, Cziczo D, Field P, Gallagher M, Gayet JF, Heymsfield A, Korolev A, Kramer M, McFarquhar G, Mertes S, Mohler O, Lance S, Lawson P, Petters MD, Pratt K, Roberts G, Rogers D, Stetzer O, Stith J, Strapp W, Twohy C, Wendisch M.  2012.  In situ, airborne instrumentation: addressing and solving measurement problems in ice clouds. Bulletin of the American Meteorological Society. 93:E529-E534.   10.1175/bams-d-11-00123.1   AbstractWebsite
Guyon, P, Graham B, Roberts GC, Mayol-Bracero OL, Maenhaut W, Artaxo P, Andreae MO.  2003.  In-canopy gradients, composition, sources, and optical properties of aerosol over the Amazon forest. Journal of Geophysical Research-Atmospheres. 108   10.1029/2003jd003465   AbstractWebsite

[1] As part of the Large-Scale Biosphere-Atmosphere Experiment in Amazonia-European Studies on Trace Gases and Atmospheric Chemistry (LBA-EUSTACH), size-fractionated aerosol samples were collected at a primary rain forest in the Brazilian Amazon during two field campaigns in April - May and September - October 1999. These two periods encompassed parts of the wet and dry seasons, respectively. Daytime-nighttime-segregated sampling was carried out at three different heights ( above, within, and below canopy level) on a 54-m meteorological tower at the forest site in order to better characterize the aerosol sources. The samples were analyzed for up to 19 trace elements by particle-induced X-ray emission analysis and for carbonaceous components by thermal-optical analysis. Equivalent black carbon (BCe) and gravimetric analyses were also performed. The average mass concentrations for particles < 2 μm diameter were 2.2 and 33.5 μg m(-3) for the wet and the dry seasons, respectively. The elements related to biomass burning and soil dust generally exhibited highest concentrations above the canopy and during daytime, while forest-derived aerosol was more concentrated underneath the canopy and during nighttime. These variations can be largely attributed to daytime convective mixing and the formation of a shallow nocturnal boundary layer, along with the possibility of enhanced nighttime release of biogenic aerosol particles. Mass scattering (α(s)) and mass absorption efficiency (α(a)) data indicate that scattering was dominated by fine aerosol, while fine and coarse aerosol both contributed significantly to absorption during both seasons. The data also suggest that components other than elemental carbon were responsible for a substantial fraction of the absorption.

Begue, N, Tulet P, Chaboureau JP, Roberts G, Gomes L, Mallet M.  2012.  Long-range transport of Saharan dust over northwestern Europe during EUCAARI 2008 campaign: Evolution of dust optical properties by scavenging. Journal of Geophysical Research-Atmospheres. 117   10.1029/2012jd017611   AbstractWebsite

The evolution of dust optical properties is illustrated in this paper through a case of long-range transport of Saharan dust over northwestern Europe during the European Integrated Project on Aerosol-Cloud-Climate and Air Quality Interactions (EUCAARI) experimental campaign in 2008. This spread of dust over northwestern Europe is investigated by combining satellite, airborne, ground-based observations and the non-hydrostatic meso-scale model Meso-NH. The total dust amount emitted during the study period is estimated to 185 Tg. The analysis of the removal processes reveals that only 12.5 Tg is lost by dry deposition, and that wet deposition is the main process of dust removal (73 Tg). The observed aerosol optical thickness ranged from 0.1 to 0.5 at the wavelength of 440 nm, with a maximum value close to 1 is found over the Netherlands (51.97 degrees N, 4.93 degrees E). Over that site, the main dust layer is located between 2.5 and 5.2 km above sea level (asl), moreover dust was also present at 0.9 km asl. The nephelometer measurements on board the ATR-42 aircraft revealed a strong wavelength dependence of the scattering coefficient over the Netherlands. The Angstrom exponent is greater than 0.5, whereas usually it approaches zero in presence of Saharan dust. This is due to high precipitation scavenging efficiency for the coarse mode, particularly below 4 km. Our results confirm that atmospheric conditions govern the life cycle of dust microphysical phenomena, providing conditions for transformation processes during transport, and removal of particles from the atmosphere.

Crumeyrolle, S, Manninen HE, Sellegri K, Roberts G, Gomes L, Kulmala M, Weigel R, Laj P, Schwarzenboeck A.  2010.  New particle formation events measured on board the ATR-42 aircraft during the EUCAARI campaign. Atmospheric Chemistry and Physics. 10:6721-6735.   10.5194/acp-10-6721-2010   AbstractWebsite

Aerosol properties were studied during an intensive airborne measurement campaign that took place at Rotterdam in Netherlands in May 2008 within the framework of the European Aerosol Cloud Climate and Air Quality Interactions project (EUCAARI). The objective of this study is to illustrate seven events of new particle formation (NPF) observed with two Condensation Particle Counters (CPCs) operated on board the ATR-42 research aircraft in airsectors around Rotterdam, and to provide information on the spatial extent of the new particle formation phenomenon based on 1-s resolution measurements of ultra-fine particle (in the size range 3-10 nm diameter, denoted N(3-10) hereafter) concentrations. The results show that particle production occurred under the influence of different air mass origins, at different day times and over the North Sea as well as over the continent. The number concentration of freshly nucleated particles (N(3-10)) varied between 5000 and 100 000 cm(-3) within the boundary layer (BL). Furthermore the vertical extension for all nucleation events observed on the ATR-42 never exceeded the upper limit of the BL. The horizontal extent of N(3-10) could not be delimited due to inflexible flight plans which could not be modified to accommodate real-time results. However, the NPF events were observed over geographically large areas; typically the horizontal extension was about 100 km and larger.

Stith, JL, Ramanathan V, Cooper WA, Roberts GC, DeMott PJ, Carmichael G, Hatch CD, Adhikary B, Twohy CH, Rogers DC, Baumgardner D, Prenni AJ, Campos T, Gao R, Anderson J, Feng Y.  2009.  An overview of aircraft observations from the Pacific Dust Experiment campaign. Journal of Geophysical Research-Atmospheres. 114   10.1029/2008jd010924   AbstractWebsite

Fourteen research flights were conducted in the Pacific Dust Experiment (PACDEX) during April and May 2007 to sample pollution and dust outbreaks from east Asia as they traveled across the northern Pacific Ocean into North America and interacted with maritime storms. Significant concentrations of black carbon (BC, consisting of soot and other light-absorbing particles measured with a soot photometer 2 instrument) and dust were observed both in the west and east Pacific Ocean from Asian plumes of dust and pollution. BC particles were observed through much of the troposphere, but the major finding is that the percentage of these particles compared with the total number of accumulation mode particles increased significantly (by a factor of 2-4) with increasing altitude, with peak values occurring between 5 and 10 km. Dust plumes had only a small impact on total cloud condensation nuclei at the sampling supersaturations but did exhibit high concentrations of ice nuclei (IN). IN concentrations in dust plumes exceeded typical tropospheric values by 4-20 times and were similar to previous studies in the Saharan aerosol layer when differences in the number concentrations of dust are accounted for. Enhanced IN concentrations were found in the upper troposphere off the coast of North America, providing a first direct validation of the transport of high-IN-containing dust layers near the tropopause entering the North American continent from distant sources. A source-specific chemical transport model was used to predict dust and other aerosols during PACDEX. The model was able to predict several features of the in situ observations, including the general altitudes where BC was found and a peak in the ratio of BC to sulfate between 5 and 10 km.

Guyon, P, Graham B, Beck J, Boucher O, Gerasopoulos E, Mayol-Bracero OL, Roberts GC, Artaxo P, Andreae MO.  2003.  Physical properties and concentration of aerosol particles over the Amazon tropical forest during background and biomass burning conditions. Atmospheric Chemistry and Physics. 3:951-967.   10.5194/acp-3-951-2003   AbstractWebsite

We investigated the size distribution, scattering and absorption properties of Amazonian aerosols and the optical thickness of the aerosol layer under the pristine background conditions typical of the wet season, as well as during the biomass-burning-influenced dry season. The measurements were made during two campaigns in 1999 as part of the European contribution to the Large-Scale BiosphereAtmosphere Experiment in Amazonia (LBA-EUSTACH). In moving from the wet to the dry season, median particle numbers were observed to increase from values comparable to those of the remote marine boundary layer (similar to400 cm(-3)) to values more commonly associated with urban smog (similar to4000 cm(-3)), due to a massive injection of submicron smoke particles. Aerosol optical depths at 500 nm increased from 0.05 to 0.8 on average, reaching a value of 2 during the dry season. Scattering and absorption coefficients, measured at 550 nm, showed a concomitant increase from average values of 6.8 and 0.4 Mm(-1) to values of 91 and 10 Mm(-1), respectively, corresponding to an estimated decrease in single-scattering albedo from ca. 0.97 to 0.91. The roughly tenfold increase in many of the measured parameters attests to the dramatic effect that extensive seasonal biomass burning (deforestation, pasture cleaning) is having on the composition and properties of aerosols over Amazonia. The potential exists for these changes to impact on regional and global climate through changes to the extinction of solar radiation as well as the alteration of cloud properties.

Rissler, J, Swietlicki E, Zhou J, Roberts G, Andreae MO, Gatti LV, Artaxo P.  2004.  Physical properties of the sub-micrometer aerosol over the Amazon rain forest during the wet-to-dry season transition - comparison of modeled and measured CCN concentrations. Atmospheric Chemistry and Physics. 4:2119-2143.   10.5194/acp-4-2119-2004   AbstractWebsite

Sub-micrometer atmospheric aerosol particles were studied in the Amazon region, 125 km northeast of Manaus, Brazil (-1degrees55.2'S, 59degrees28.1'W). The measurements were performed during the wet-to-dry transition period, 4-28 July 2001 as part of the LBA (Large-Scale Biosphere Atmosphere Experiment in Amazonia) CLAIRE-2001 (Cooperative LBA Airborne Regional Experiment) experiment. The number size distribution was measured with two parallel differential mobility analyzers, the hygroscopic growth at 90% RH with a Hygroscopic Tandem Mobility Analyzer (H-TDMA) and the concentrations of cloud condensation nuclei (CCN) with a cloud condensation nuclei counter. A model was developed that uses the H-TDMA data to predict the number of soluble molecules or ions in the individual particles and the corresponding minimum particle diameter for activation into a cloud droplet at a certain supersaturation. Integrating the number size distribution above this diameter, CCN concentrations were predicted with a time resolution of 10 min and compared to the measured concentrations. During the study period, three different air masses were identified and compared: clean background, air influenced by aged biomass burning, and moderately polluted air from recent local biomass burning. For the clean period 2001, similar number size distributions and hygroscopic behavior were observed as during the wet season at the same site in 1998, with mostly internally mixed particles of low diameter growth factor (similar to1.3 taken from dry to 90% RH). During the periods influenced by biomass burning the hygroscopic growth changed slightly, but the largest difference was seen in the number size distribution. The CCN model was found to be successful in predicting the measured CCN concentrations, typically within 25%. A sensitivity study showed relatively small dependence on the assumption of which model salt that was used to predict CCN concentrations from H-TDMA data. One strength of using H-TDMA data to predict CCN concentrations is that the model can also take into account soluble organic compounds, insofar as they go into solution at 90% RH. Another advantage is the higher time resolution compared to using size-resolved chemical composition data.

Guyon, P, Boucher O, Graham B, Beck J, Mayol-Bracero OL, Roberts GC, Maenhaut W, Artaxo P, Andreae MO.  2003.  Refractive index of aerosol particles over the Amazon tropical forest during LBA-EUSTACH 1999. Journal of Aerosol Science. 34:883-907.   10.1016/s0021-8502(03)00052-1   AbstractWebsite

Optical properties of aerosol particles were characterized during two field campaigns at a remote rainforest site in Rond (o) over cap nia, Brazil, as part of the project European Studies on Trace Gases and Atmospheric Chemistry, a contribution to the Large-Scale Biosphere-Atmosphere Experiment in Amazonia (LBA-EUSTACH). The measurements included background (wet season), biomass burning (dry season), and transition period conditions. Optical measurements of light scattering and absorption were combined with data on number/size distributions in a new iterative method, which retrieves the effective imaginary refractive index of the particles at a wavelength of 545 nm. For ambient relative humidities lower than 80%, background aerosols exhibited an average refractive index of 1.42 - 0.006i. Biomass burning aerosols displayed a much larger imaginary part, with an average refractive index of 1.41 - 0.013i. Other climate-relevant parameters were estimated from Mie calculations. These include single-scattering albedos of 0.93 +/- 0.03 and 0.90 +/- 0.03 (at ambient humidity), asymmetry parameters of 0.63 +/- 0.02 and 0.70 +/- 0.03, and backscatter ratios of 0.12 +/- 0.01 and 0.08 +/- 0.01 for background and biomass burning aerosols, respectively. (C) 2003 Published by Elsevier Ltd.

Hammer, E, Gysel M, Roberts GC, Elias T, Hofer J, Hoyle CR, Bukowiecki N, Dupont JC, Burnet F, Baltensperger U, Weingartner E.  2014.  Size-dependent particle activation properties in fog during the ParisFog 2012/13 field campaign. Atmospheric Chemistry and Physics. 14:10517-10533.   10.5194/acp-14-10517-2014   AbstractWebsite

Fog-induced visibility reduction is responsible for a variety of hazards in the transport sector. Therefore there is a large demand for an improved understanding of fog formation and thus improved forecasts. Improved fog forecasts require a better understanding of the numerous complex mechanisms during the fog life cycle. During winter 2012/13 a field campaign called ParisFog aiming at fog research took place at SIRTA (Instrumented Site for Atmospheric Remote Sensing Research). SIRTA is located about 20 km southwest of the Paris city center, France, in a semi-urban environment. In situ activation properties of the prevailing fog were investigated by measuring (1) total and interstitial (non-activated) dry particle number size distributions behind two different inlet systems; (2) interstitial hydrated aerosol and fog droplet size distributions at ambient conditions; and (3) cloud condensation nuclei (CCN) number concentration at different supersaturations (SS) with a CCN counter. The aerosol particles were characterized regarding their hygroscopic properties, fog droplet activation behavior and contribution to light scattering for 17 developed fog events. Low particle hygroscopicity with an overall median of the hygroscopicity parameter, kappa, of 0.14 was found, likely caused by substantial influence from local traffic and wood burning emissions. Measurements of the aerosol size distribution at ambient RH re-vealed that the critical wet diameter, above which the hydrated aerosols activate to fog droplets, is rather large (with a median value of 2.6 mu m) and is highly variable (ranging from 1 to 5 mu m) between the different fog events. Thus, the number of activated fog droplets was very small and the nonactivated hydrated particles were found to contribute significantly to the observed light scattering and thus to the reduction in visibility. Combining all experimental data, the effective peak supersaturation, SSpeak, a measure of the peak supersaturation during the fog formation, was determined. The median SSpeak value was estimated to be in the range from 0.031 to 0.046% (upper and lower limit estimations), which is in good agreement with previous experimental and modeling studies of fog.

Martin, ST, Andreae MO, Artaxo P, Baumgardner D, Chen Q, Goldstein AH, Guenther A, Heald CL, Mayol-Bracero OL, McMurry PH, Pauliquevis T, Poschl U, Prather KA, Roberts GC, Saleska SR, Dias MAS, Spracklen DV, Swietlicki E, Trebs I.  2010.  Sources and properties of Amazonian aerosol particles. Reviews of Geophysics. 48   10.1029/2008rg000280   AbstractWebsite

This review provides a comprehensive account of what is known presently about Amazonian aerosol particles and concludes by formulating outlook and priorities for further research. The review is organized to follow the life cycle of Amazonian aerosol particles. It begins with a discussion of the primary and secondary sources relevant to the Amazonian particle burden, followed by a presentation of the particle properties that characterize the mixed populations present over the Amazon Basin at different times and places. These properties include number and mass concentrations and distributions, chemical composition, hygroscopicity, and cloud nucleation ability. The review presents Amazonian aerosol particles in the context of natural compared to anthropogenic sources as well as variability with season and meteorology. This review is intended to facilitate an understanding of the current state of knowledge on Amazonian aerosol particles specifically and tropical continental aerosol particles in general and thereby to enhance future research in this area.

Guyon, P, Graham B, Roberts GC, Mayol-Bracero OL, Maenhaut W, Artaxo P, Andreae MO.  2004.  Sources of optically active aerosol particles over the Amazon forest. Atmospheric Environment. 38:1039-1051.   10.1016/j.atmosenv.2003.10.051   AbstractWebsite

Size-fractionated ambient aerosol samples were collected at a pasture site and a primary rainforest site in the Brazilian Amazon Basin during two field campaigns (April-May and September-October 1999), as part of the European contribution to the Large-Scale Biosphere-Atmosphere Experiment in Amazonia (LBA-EUSTACH). The samples were analyzed for up to 19 trace elements by particle-induced X-ray emission analysis (PIXE), for equivalent black carbon (BCe) by a light reflectance technique and for mass concentration by gravimetric analysis. Additionally, we made continuous measurements of absorption and light scattering by aerosol particles. The vertical chemical composition gradients at the forest site have been discussed in a companion article (Journal of Geophysical Research-Atmospheres 108 (1318), 4591 (doi:4510.1029/2003JD003465)). In this article, we present the results of a source identification and quantitative apportionment study of the wet and dry season aerosols, including an apportionment of the measured scattering and absorption properties of the total aerosol in terms of the identified aerosol sources. Source apportionments (obtained from absolute principal component analysis) revealed that the wet and dry season aerosols contained the same three main components, but in different (absolute and relative) amounts: the wet season aerosol consisted mainly of a natural biogenic component, whereas pyrogenic aerosols dominated the dry season aerosol mass. The third component identified was soil dust, which was often internally mixed with the biomass-burning aerosol. All three components contributed significantly to light extinction during both seasons. At the pasture site, up to 47% of the light absorption was attributed to biogenic particles during the wet season, and up to 35% at the tower site during the wet-to-dry transition period. The results from the present study suggest that, in addition to pyrogenic particles, biogenic and soil dust aerosols must be taken into account when modeling the physical and optical properties of aerosols in forested regions such the Amazon Basin. (C) 2003 Published by Elsevier Ltd.

Graham, B, Mayol-Bracero OL, Guyon P, Roberts GC, Decesari S, Facchini MC, Artaxo P, Maenhaut W, Koll P, Andreae MO.  2002.  Water-soluble organic compounds in biomass burning aerosols over Amazonia - 1. Characterization by NMR and GC-MS. Journal of Geophysical Research-Atmospheres. 107   10.1029/2001jd000336   AbstractWebsite

[1] As part of the European contribution to the Large-Scale Atmosphere-Biosphere Experiment in Amazonia (LBA-EUSTACH), aerosols were sampled at representative pasture and primary rainforest sites in Rondonia, Brazil, during the 1999 "burning season" and dry-to-wet season transition (September-October). Water-soluble organic compounds (WSOCs) within the samples were characterized using a combination of H-1 Nuclear Magnetic Resonance (NMR) spectroscopy for chemical functional group analysis, and Gas Chromatography-Mass Spectrometry (GC-MS) for identification and quantification of individual low-molecular-weight compounds. The H-1 NMR analysis indicates that WSOCs are predominantly aliphatic or oxygenated aliphatic compounds (alcohols, carboxylic acids, etc.), with a minor content of aromatic rings carrying carboxylic and phenolic groups. Levoglucosan (1,6-anhydro-beta-D-glucose), a well-known cellulose combustion product, was the most abundant individual compound identified by GC-MS (0.04-6.90 mug m(-3)), accounting for 1-6% of the total carbon (TC) and 2-8% of the water-soluble organic carbon (WSOC). Other anhydrosugars, produced by hemicellulose breakdown, were detected in much smaller amounts, in addition to series of acids, hydroxyacids, oxoacids, and polyalcohols (altogether 2-5% of TC, 3-6% of WSOC). Most correlated well with organic carbon, black carbon, and potassium, indicating biomass burning to be the major source. A series of sugar alcohols (mannitol, arabitol, erythritol) and sugars (glucose, fructose, mannose, galactose, sucrose, trehalose) were identified as part of the natural background aerosol and are probably derived from airborne microbes and other biogenic material. The bulk of the WSOCs (86-91% WSOC) eluded analysis by GC-MS and may be predominantly high-molecular weight in nature.

Mayol-Bracero, OL, Guyon P, Graham B, Roberts G, Andreae MO, Decesari S, Facchini MC, Fuzzi S, Artaxo P.  2002.  Water-soluble organic compounds in biomass burning aerosols over Amazonia - 2. Apportionment of the chemical composition and importance of the polyacidic fraction. Journal of Geophysical Research-Atmospheres. 107   10.1029/2001jd000522   AbstractWebsite

Chemical characterization was performed on carbonaceous aerosols from Rondonia in the Brazilian Amazon region as part of the European contribution to the Large-Scale Biosphere-Atmosphere Experiment in Amazonia (LBA-EUSTACH). The sampling period (October 1999) included the peak of the burning season as well as the dry-to-wet season transition. Characterization of the carbonaceous material was performed by using a thermal combustion method. This enabled determination of aerosol total carbon (TC), black carbon (BC), and organic carbon (OC). A significant fraction of the BC material (on average about 50%) seemed to be highly refractory organic material soluble in water. A more detailed analysis of the water-soluble organic carbon (WSOC) fraction of the TC was undertaken, involving measurements of WSOC content, high-performance liquid chromatography (HPLC) separation (with UV detection) of the water-soluble components, and characterization of individual components by gas chromatography/mass spectrometry (GC/MS). The WSOC fraction accounted for 45-75% of the OC. This high WSOC fraction suggests an aerosol derived mainly from smoldering combustion. Using GC/MS, many different compounds, containing hydroxy, carboxylate, and carbonyl groups, were detected. The fraction of the WSOC identified by GC/MS was about 10%. Three classes of compounds were separated by HPLC/UV: neutral compounds (N), monocarboxylic and dicarboxylic acids (MDA), and polycarboxylic acids (PA). The sum of these three groups accounted for about 70% of the WSOC, with MDA and PA being most abundant (about 50%). Good correlations (r(2) between 0.84 and 0.99) of BCwater (BC after water extraction) and levoglucosan (both indicators of biomass combustion) with the water-soluble species (i.e., WSOC, N, MDA, and PA), and their increase in concentrations during the burning period provided strong evidence that biomass burning is a major source of the WSOC. Particularly interesting is that PA and therefore, probably, humic-like substances (due to their polyacidic nature) are generated in significant amounts during biomass burning. These substances, due to their water solubility and surface tension-lowering effects, may play an important role in determining the overall cloud condensation nuclei activity of biomass burning aerosols and, consequently, could be important in cloud processes and climate forcing.