Export 8 results:
Sort by: [ Author  (Asc)] Title Type Year
A B [C] D E F G H I J K L M N O P Q R S T U V W X Y Z   [Show ALL]
Calmer, R, Roberts GC, Preissler J, Sanchez KJ, Derrien S, O'Dowd C.  2018.  Vertical wind velocity measurements using a five-hole probe with remotely piloted aircraft to study aerosol-cloud interactions. Atmospheric Measurement Techniques. 11:2583-2599.   10.5194/amt-11-2583-2018   AbstractWebsite

The importance of vertical wind velocities (in particular positive vertical wind velocities or updrafts) in atmospheric science has motivated the need to deploy multi-hole probes developed for manned aircraft in small remotely piloted aircraft (RPA). In atmospheric research, lightweight RPAs ( < 2.5 kg) are now able to accurately measure atmospheric wind vectors, even in a cloud, which provides essential observing tools for understanding aerosol-cloud interactions. The European project BACCHUS (impact of Biogenic versus Anthropogenic emissions on Clouds and Climate: towards a Holistic UnderStanding) focuses on these specific interactions. In particular, vertical wind velocity at cloud base is a key parameter for studying aerosol-cloud interactions. To measure the three components of wind, a RPA is equipped with a five-hole probe, pressure sensors, and an inertial navigation system (INS). The five-hole probe is calibrated on a multi-axis platform, and the probe-INS system is validated in a wind tunnel. Once mounted on a RPA, power spectral density (PSD) functions and turbulent kinetic energy (TKE) derived from the five-hole probe are compared with sonic anemometers on a meteorological mast. During a BACCHUS field campaign at Mace Head Atmospheric Research Station (Ireland), a fleet of RPAs was deployed to profile the atmosphere and complement ground-based and satellite observations of physical and chemical properties of aerosols, clouds, and meteorological state parameters. The five-hole probe was flown on straight-and-level legs to measure vertical wind velocities within clouds. The vertical velocity measurements from the RPA are validated with vertical velocities derived from a ground-based cloud radar by showing that both measurements yield model-simulated cloud droplet number concentrations within 10 %. The updraft velocity distributions illustrate distinct relationships between vertical cloud fields in different meteorological conditions.

Claeys, M, Roberts G, Mallet M, Arndt J, Sellegri K, Sciare J, Wenger J, Sauvage B.  2017.  Optical, physical and chemical properties of aerosols transported to a coastal site in the western Mediterranean: a focus on primary marine aerosols. Atmospheric Chemistry and Physics. 17:7891-7915.   10.5194/acp-17-7891-2017   AbstractWebsite

As part of the ChArMEx-ADRIMED campaign (summer 2013), ground-based in situ observations were conducted at the Ersa site (northern tip of Corsica; 533 m a.s.l.) to characterise the optical, physical and chemical properties of aerosols. During the observation period, a major influence of primary marine aerosols was detected (22-26 June), with a mass concentration reaching up to 6.5 mu g m(-3) and representing more than 40% of the total PM10 mass concentration. Its relatively low ratio of chloride to sodium (average of 0.57) indicates a fairly aged sea salt aerosol at Ersa. In this work, an original data set, obtained from online real-time instruments (ATOFMS, PILS-IC) has been used to characterise the ageing of primary marine aerosols (PMAs). During this PMA period, the mixing of fresh and aged PMAs was found to originate from both local and regional (Gulf of Lion) emissions, according to local wind measurements and FLEXPART back trajectories. Two different aerosol regimes have been identified: a dust outbreak (dust) originating from Algeria/Tunisia, and a pollution period with aerosols originating from eastern Europe, which includes anthropogenic and biomass burning sources (BBP). The optical, physical and chemical properties of the observed aerosols, as well as their local shortwave (SW) direct radiative effect (DRE) in clear-sky conditions, are compared for these three periods in order to assess the importance of the direct radiative impact of PMAs compared to other sources above the western Mediterranean Basin. As expected, AERONET retrievals indicate a relatively low local SW DRF during the PMA period with mean values of -11 +/- 4 at the surface and -8 +/- 3W m(-2) at the top of the atmosphere (TOA). In comparison, our results indicate that the dust outbreak observed at our site during the campaign, although of moderate intensity (AOD of 0.3-0.4 at 440 nm and column-integrated SSA of 0.90-0.95), induced a local instantaneous SW DRF that is nearly 3 times the effect calculated during the PMA period, with maximum values up to -40 W m(-2) at the surface. A similar range of values were found for the BBP period to those during the dust period (SW DRF at the surface and TOA of -23 +/- 6 and -15 +/- 4 W m(-2) respectively). The multiple sources of measurements at Ersa allowed the detection of a PMA-dominant period and their characterisation in terms of ageing, origin, transport, optical and physical properties and direct climatic impact.

Collins, DB, Ault AP, Moffet RC, Ruppel MJ, Cuadra-Rodriguez LA, Guasco TL, Corrigan CE, Pedler BE, Azam F, Aluwihare LI, Bertram TH, Roberts GC, Grassian VH, Prather KA.  2013.  Impact of marine biogeochemistry on the chemical mixing state and cloud forming ability of nascent sea spray aerosol. Journal of Geophysical Research-Atmospheres. 118:8553-8565.   10.1002/jgrd.50598   AbstractWebsite

The composition and properties of sea spray aerosol, a major component of the atmosphere, are often controlled by marine biological activity; however, the scope of impacts that ocean chemistry has on the ability for sea spray aerosol to act as cloud condensation nuclei (CCN) is not well understood. In this study, we utilize a mesocosm experiment to investigate the impact of marine biogeochemical processes on the composition and mixing state of sea spray aerosol particles with diameters<0.2 mu m produced by controlled breaking waves in a unique ocean-atmosphere facility. An increase in relative abundance of a distinct, insoluble organic particle type was observed after concentrations of heterotrophic bacteria increased in the seawater, leading to an 86 +/- 5% reduction in the hygroscopicity parameter () at 0.2% supersaturation. Aerosol size distributions showed very little change and the submicron organic mass fraction increased by less than 15% throughout the experiment; as such, neither of these typical metrics can explain the observed reduction in hygroscopicity. Predictions of the hygroscopicity parameter that make the common assumption that all particles have the same bulk organic volume fractions lead to overpredictions of CCN concentrations by 25% in these experiments. Importantly, key changes in sea spray aerosol mixing state that ultimately influenced CCN activity were driven by bacteria-mediated alterations to the organic composition of seawater.

Conant, WC, VanReken TM, Rissman TA, Varutbangkul V, Jonsson HH, Nenes A, Jimenez JL, Delia AE, Bahreini R, Roberts GC, Flagan RC, Seinfeld JH.  2004.  Aerosol-cloud drop concentration closure in warm cumulus. Journal of Geophysical Research-Atmospheres. 109   10.1029/2003jd004324   AbstractWebsite

[1] Our understanding of the activation of aerosol particles into cloud drops during the formation of warm cumulus clouds presently has a limited observational foundation. Detailed observations of aerosol size and composition, cloud microphysics and dynamics, and atmospheric thermodynamic state were collected in a systematic study of 21 cumulus clouds by the Center for Interdisciplinary Remotely-Piloted Aircraft Studies (CIRPAS) Twin Otter aircraft during NASA's Cirrus Regional Study of Tropical Anvils and Cirrus Layers - Florida Area Cirrus Experiment (CRYSTAL-FACE). An "aerosol-cloud'' closure study was carried out in which a detailed cloud activation parcel model, which predicts cloud drop concentration using observed aerosol concentration, size distribution, cloud updraft velocity, and thermodynamic state, is evaluated against observations. On average, measured droplet concentration in adiabatic cloud regions is within 15% of the predictions. This agreement is corroborated by independent measurements of aerosol activation carried out by two cloud condensation nucleus (CCN) counters on the aircraft. Variations in aerosol concentration, which ranged from 300 to 3300 cm(-3), drives large microphysical differences ( 250 2300 cm(-3)) observed among continental and maritime clouds in the South Florida region. This is the first known study in which a cloud parcel model is evaluated in a closure study using a constraining set of data collected from a single platform. Likewise, this is the first known study in which relationships among aerosol size distribution, CCN spectrum, and cloud droplet concentration are all found to be consistent with theory within experimental uncertainties much less than 50%. Vertical profiles of cloud microphysical properties ( effective radius, droplet concentration, dispersion) clearly demonstrate the boundary layer aerosol's effect on cloud microphysics throughout the lowest 1 km of cloud depth. Onboard measurements of aerosol hygroscopic growth and the organic to sulfate mass ratio are related to CCN properties. These chemical data are used to quantify the range of uncertainty associated with the simplified treatment of aerosol composition assumed in the closure study.

Corrigan, CE, Roberts GC, Ramana MV, Kim D, Ramanathan V.  2008.  Capturing vertical profiles of aerosols and black carbon over the Indian Ocean using autonomous unmanned aerial vehicles. Atmospheric Chemistry and Physics. 8:737-747.   10.5194/acp-8-737-2008   AbstractWebsite

Measurements of the vertical distribution of aerosol properties provide essential information for generating more accurate model estimates of radiative forcing and atmospheric heating rates compared with employing remotely sensed column averaged properties. A month long campaign over the Indian Ocean during March 2006 investigated the interaction of aerosol, clouds, and radiative effects. Routine vertical profiles of aerosol and water vapor were determined using autonomous unmanned aerial vehicles equipped with miniaturized instruments. Comparisons of these airborne instruments with established ground-based instruments and in aircraft-to-aircraft comparisons demonstrated an agreement within 10%. Aerosol absorption optical depths measured directly using the unmanned aircraft differed from columnar AERONET sun-photometer results by only 20%. Measurements of total particle concentration, particle size distributions, aerosol absorption and black carbon concentrations are presented along with the trade wind thermodynamic structure from the surface to 3000 m above sea level. Early March revealed a well-mixed layer up to the cloud base at 500 m above mean sea level (m a.s.l.), followed by a decrease of aerosol concentrations with altitude. The second half of March saw the arrival of a high altitude plume existing above the mixed layer that originated from a continental source and increased aerosol concentrations by more than tenfold, yet the surface air mass showed little change in aerosol concentrations and was still predominantly influenced by marine sources. Black carbon concentrations at 1500 m above sea level increased from 70 ng/m(3) to more than 800 ng/m(3) with the arrival of this polluted plume. The absorption aerosol optical depth increased from as low as 0.005 to as much as 0.035 over the same period. The spectral dependence of the aerosol absorption revealed an absorption Angstrom exponent of 1.0, which is typical of an aerosol with most of its absorption attributed to black carbon and generally indicates the absorbing component originated from fossil fuel sources and other high-temperature combustion sources. The results indicate that surface measurements do not represent the aerosol properties within the elevated layers, especially if these layers are influenced by long range transport.

Creamean, JM, Ault AP, Ten Hoeve JE, Jacobson MZ, Roberts GC, Prather KA.  2011.  Measurements of aerosol chemistry during new particle formation events at a remote rural mountain site. Environmental Science & Technology. 45:8208-8216.   10.1021/es103692f   AbstractWebsite

Determining the major sources of particles that act as cloud condensation nuclei (CCN) represents a critical step in the development of a more fundamental understanding of aerosol impacts on cloud formation and climate. Reported herein are direct measurements of the CCN activity of newly formed ambient particles, measured at a remote rural site in the Sierra Nevada Mountains of Northern California. Nucleation events in the winter of 2009 occurred during two pristine periods following precipitation, with higher gas-phase SO(2) concentrations during the second period, when faster particle growth occurred (7-8 nm/h). Amines, as opposed to ammonia, and sulfate were detected in the particle phase throughout new particle formation (NPF) events, increasing in number as the particles grew to larger sizes. Interestingly, long-range transport of SO(2) from Asia appeared to potentially play a role in NPF during faster particle growth. Understanding the propensity of newly formed particles to act as CCN is critical for predicting the effects of NPF on orographic cloud formation during winter storms along the Sierra Nevada Mountain range. The potential impact of newly formed particles in remote regions needs to be compared with that of transported urban aerosols when evaluating the impact of aerosols on clouds and climate.

Crispel, P, Roberts G.  2018.  All-sky photogrammetry techniques to georeference a cloud field. Atmospheric Measurement Techniques. 11:593-609.   10.5194/amt-11-593-2018   AbstractWebsite

In this study, we present a novel method of identifying and geolocalizing cloud field elements from a portable all-sky camera stereo network based on the ground and oriented towards zenith. The methodology is mainly based on stereophotogrammetry which is a 3-D reconstruction technique based on triangulation from corresponding stereo pixels in rectified images. In cases where clouds are horizontally separated, identifying individual positions is performed with segmentation techniques based on hue filtering and contour detection algorithms. Macroscopic cloud field characteristics such as cloud layer base heights and velocity fields are also deduced. In addition, the methodology is fitted to the context of measurement campaigns which impose simplicity of implementation, auto-calibration, and portability. Camera internal geometry models are achieved a priori in the laboratory and validated to ensure a certain accuracy in the peripheral parts of the all-sky image. Then, stereophotogrammetry with dense 3-D reconstruction is applied with cameras spaced 150m apart for two validation cases. The first validation case is carried out with cumulus clouds having a cloud base height at 1500ma. g.l. The second validation case is carried out with two cloud layers: a cumulus fractus layer with a base height at 1000ma. g.l. and an altocumulus stratiformis layer with a base height of 2300ma. g.l. Velocity fields at cloud base are computed by tracking image rectangular patterns through successive shots. The height uncertainty is estimated by comparison with a Vaisala CL31 ceilometer located on the site. The uncertainty on the horizontal coordinates and on the velocity field are theoretically quantified by using the experimental uncertainties of the cloud base height and camera orientation. In the first cumulus case, segmentation of the image is performed to identify individuals clouds in the cloud field and determine the horizontal positions of the cloud centers.

Crumeyrolle, S, Manninen HE, Sellegri K, Roberts G, Gomes L, Kulmala M, Weigel R, Laj P, Schwarzenboeck A.  2010.  New particle formation events measured on board the ATR-42 aircraft during the EUCAARI campaign. Atmospheric Chemistry and Physics. 10:6721-6735.   10.5194/acp-10-6721-2010   AbstractWebsite

Aerosol properties were studied during an intensive airborne measurement campaign that took place at Rotterdam in Netherlands in May 2008 within the framework of the European Aerosol Cloud Climate and Air Quality Interactions project (EUCAARI). The objective of this study is to illustrate seven events of new particle formation (NPF) observed with two Condensation Particle Counters (CPCs) operated on board the ATR-42 research aircraft in airsectors around Rotterdam, and to provide information on the spatial extent of the new particle formation phenomenon based on 1-s resolution measurements of ultra-fine particle (in the size range 3-10 nm diameter, denoted N(3-10) hereafter) concentrations. The results show that particle production occurred under the influence of different air mass origins, at different day times and over the North Sea as well as over the continent. The number concentration of freshly nucleated particles (N(3-10)) varied between 5000 and 100 000 cm(-3) within the boundary layer (BL). Furthermore the vertical extension for all nucleation events observed on the ATR-42 never exceeded the upper limit of the BL. The horizontal extent of N(3-10) could not be delimited due to inflexible flight plans which could not be modified to accommodate real-time results. However, the NPF events were observed over geographically large areas; typically the horizontal extension was about 100 km and larger.