Publications

Export 2 results:
Sort by: Author Title Type [ Year  (Desc)]
2017
Kloosterziel, RC, Carnevale GF, Orlandi P.  2017.  Equatorial inertial instability with full Coriolis force. Journal of Fluid Mechanics. 825:69-108.   10.1017/jfm.2017.377   AbstractWebsite

The zonally symmetric inertial instability of oceanic near-equatorial flows is studied through high-resolution numerical simulations. In homogeneous upper layers, the instability of surface-confined westward currents implies potentially fast downward mixing of momentum with a predictable final equilibrium. With increasing Reynolds number, latitudinal scales along the surface associated with the instability become ever smaller and initially the motions are ever more concentrated underneath the surface. The results suggest that even if the upper layer is stratified, it may still be necessary to include the full Coriolis force in the dynamics rather than use the traditional beta-plane approximation.

2011
Carnevale, GF, Kloosterziel RC, Orlandi P, van Sommeren D.  2011.  Predicting the aftermath of vortex breakup in rotating flow. Journal of Fluid Mechanics. 669:90-119.   10.1017/s0022112010004945   AbstractWebsite

A method for predicting the outcome of vortex breakup in a rotating flow is introduced. The vortices dealt with here are subject to both centrifugal and barotropic instabilities. The prediction of the aftermath of the breakup relies on knowing how both centrifugal and barotropic instabilities would equilibrate separately. A theoretical model for non-linear equilibration in centrifugal instability is wedded to two-dimensional simulation of barotropic instability to predict the final vortices that emerge from the debris of the original vortex. This prediction method is tested against three-dimensional Navier-Stokes simulations. For vortices in which a rapid centrifugal instability triggers a slower barotropic instability, the method is successful both qualitatively and quantitatively. The skill of the prediction method decreases as the time scales of the two instabilities become comparable.