Publications

Export 6 results:
Sort by: Author Title Type [ Year  (Desc)]
2014
Orlandi, P, Pirozzoli S, Bernardini M, Carnevale GF.  2014.  A minimal flow unit for the study of turbulence with passive scalars. Journal of Turbulence. 15:731-751.   10.1080/14685248.2014.927066   AbstractWebsite

The concept of a minimal flow unit (MFU) for the study of the basic physics of turbulent flows is introduced. The MFU is an initial vorticity configuration that consists of a few simple well-defined large-scale vortex structures. The form and position of these structures are chosen so that their interaction produces turbulence capturing many of the essential characteristics of isotropic homogeneous turbulence produced from random-phase initial conditions or that produced by continual random-phase forcing. The advantage of using the MFU is that the evolution of the vortex structures can be followed more clearly and the relationship between the evolving vortex structures and the various ranges in the energy spectrum can be more clearly defined. The addition of passive scalar fields to the MFU permits an investigation of passive scalar mixing that is relevant to the study of combustion. With a particular choice of the MFU, one that produces a trend to a finite-time singularity in the vorticity field, it is demonstrated that passive scalar distributed in the original large-scale vortices will develop intense gradients in the region where the vorticity is tending toward a singularity. In viscous flow, the evolution of the MFU clearly shows how the volume of the regions where originally well-separated passive scalars come into contact increases with increasing Reynolds number.

2009
Espa, S, Cenedese A, Mariani M, Carnevale GF.  2009.  Quasi-two-dimensional flow on the polar beta-plane: Laboratory experiments. Journal of Marine Systems. 77:502-510.   10.1016/j.jmarsys.2008.10.015   AbstractWebsite

Geophysical turbulence is strongly affected by the variation of the Coriolis parameter with latitude. This variation results in the so-called beta-effect, which forces energy from small-scales to be transferred preferentially into zonal motions. This effect results in the formation of narrow jet-like zonal flows that dominate the dynamics and act as transport barriers. Here, laboratory experiments are used to reproduce this effect in decaying turbulent flows. An electromagnetic cell is used to generate an initial field of vorticity in a rotating tank. Under conditions of quasigeostrophic flow, the beta-effect is produced by depth variation of the flow instead of variation of the Coriolis parameter. The effects of changing the container geometry and the overall fluid depth on the production of jets are investigated. The results suggest that this laboratory configuration can be used to model jet formation in the oceans and that increasing fluid depth is a practical way to decrease viscous effects. (C) 2008 Elsevier B.V. All rights reserved.

2007
Orlandi, P, Carnevale GF.  2007.  Nonlinear amplification of vorticity in inviscid interaction of orthogonal Lamb dipoles. Physics of Fluids. 19   10.1063/1.2732438   AbstractWebsite

Dynamical arguments based on the structure of the Euler equations suggest the possibility of rapid amplification of vorticity in which the vorticity and the rate of strain grow proportionately. During such growth, the vorticity is expected to amplify as a (t(s)-t)(-1) power-law in time. This behavior is difficult to demonstrate numerically, in part, because initial transients tend to obscure it. Lamb dipoles are used here to construct the initial vorticity. This helps to avoid these transients and results in a flow exhibiting the expected power-law vorticity amplification for a period of time. The spatial region where the vorticity growth rate is maximal is investigated in detail using a decomposition of the vorticity along the principal axes of the rate-of-strain tensor. It is demonstrated that the vorticity and strain rate in one direction in this decomposition are proportional during the period of rapid vorticity growth. These findings suggest that, during this period, the Euler equations can be reduced to a one-dimensional model equation for vorticity in the rate-of-strain coordinate system. (C) 2007 American Institute of Physics.

1999
Kloosterziel, RC, Carnevale GF.  1999.  On the evolution and saturation of instabilities of two-dimensional isolated circular vortices. Journal of Fluid Mechanics. 388:217-257.   10.1017/s0022112099004760   AbstractWebsite

Laboratory observations and numerical experiments have shown that a variety of compound vortices can emerge in two-dimensional flow due to the instability of isolated circular vortices. The simple geometrical features of these compound vortices suggest that their description may take a simple form if an appropriately chosen set of functions is used. We employ a set which is complete on the infinite plane for vorticity distributions with finite total enstrophy. Through projection of the vorticity equation (Galerkin method) and subsequent truncation we derive a dynamical system which is used to model the observed behaviour in as simple as possible a fashion. It is found that at relatively low-order truncations the observed behaviour is qualitatively captured by the dynamical system. We determine what the necessary ingredients are for saturation of instabilities at finite amplitude in terms of wave-wave interactions and feedback between various azimuthal components of the vorticity field.

1991
Carnevale, GF, Falcioni M, Isola S, Purini R, Vulpiani A.  1991.  Fluctuation‐response relations in systems with chaotic behavior. Physics of Fluids a-Fluid Dynamics. 3:2247-2254.   10.1063/1.857905   AbstractWebsite

The statistics of systems with good chaotic properties obey a formal fluctuation-response relation which gives the average linear response of a dynamical system to an external perturbation in terms of two-time correlation functions. Unfortunately, except for particularly simple cases, the appropriate form of correlation function is unknown because an analytic expression for the invariant density is lacking. The simplest situation is that in which the probability distribution is Gaussian. In that case, the fluctuation-response relation is a linear relation between the response matrix and the two-time two-point correlation matrix. Some numerical computations have been carried out in low-dimensional models of hydrodynamic systems. The results show that fluctuation-response relation for Gaussian distributions is not a useful approximation. Nevertheless, these calculations show that, even for non-Gaussian statistics, the response function and the two-time correlations can have similar qualitative features, which may be attributed to the existence of the more general fluctuation-response relation.

Carnevale, GF, Kloosterziel RC, vanHeijst GJF.  1991.  Propagation of barotropic vortices over topography in a rotating tank. Journal of Fluid Mechanics. 233:119-139.   10.1017/s0022112091000411   AbstractWebsite

A small-scale cyclonic vortex in a relatively broad valley tends to climb up and out of the valley in a cyclonic spiral about the centre, and when over a relatively broad hill it tends to climb toward the top in an anticyclonic spiral around the peak. This phenomenon is examined here through two-dimensional numerical simulations and rotating-tank experiments. The basic mechanism involved is shown to be the same as that which accounts for the northwest propagation of cyclones on a beta-plane. This inviscid nonlinear effect is also shown to be responsible for the observed translationary motion of barotropic vortices in a free-surface rotating tank. The behaviour of isolated vortices is contrasted with that of vortices with non-vanishing circulation.