Publications

Export 2 results:
Sort by: Author Title Type [ Year  (Desc)]
2013
Carnevale, GF, Kloosterziel RC, Orlandi P.  2013.  Inertial and barotropic instabilities of a free current in three-dimensional rotating flow. Journal of Fluid Mechanics. 725:117-151.   10.1017/jfm.2013.191   AbstractWebsite

A current in a homogeneous rotating fluid is subject to simultaneous inertial and barotropic instabilities. Inertial instability causes rapid mixing of streamwise absolute linear momentum and alters the vertically averaged velocity profile of the current. The resulting profile can be predicted by a construction based on absolute-momentum conservation. The alteration of the mean velocity profile strongly affects how barotropic instability will subsequently change the flow. If a current with a symmetric distribution of cyclonic and anticyclonic vorticity undergoes only barotropic instability, the result will be cyclones and anticyclones of the same shape and amplitude. Inertial instability breaks this symmetry. The combined effect of inertial and barotropic instability produces anticyclones that are broader and weaker than the cyclones. A two-step scheme for predicting the result of the combined inertial and barotropic instabilities is proposed and tested. This scheme uses the construction for the redistribution of streamwise absolute linear momentum to predict the mean current that results from inertial instability and then uses this equilibrated current as the initial condition for a two- dimensional simulation that predicts the result of the subsequent barotropic instability. Predictions are made for the evolution of a Gaussian jet and are compared with three-dimensional simulations for a range of Rossby numbers. It is demonstrated that the actual redistribution of absolute momentum in the three-dimensional simulations is well predicted by the construction used here. Predictions are also made for the final number and size of vortices that result from the combined inertial and barotropic instabilities.

2008
Espa, S, Carnevale GF, Cenedese A, Mariani M.  2008.  Quasi-two-dimensional decaying turbulence subject to the effect. Journal of Turbulence. 9:1-18.   10.1080/14685240802464417   AbstractWebsite

Freely decaying quasi-2D turbulence under the influence of a meridional variation of the Coriolis parameter f ( effect) is experimentally and numerically modelled. The experimental flow is generated in a rotating electromagnetic cell where the variation of f is approximated by a nearly equivalent topographical effect. In the presence of a high effect, the initial disordered vorticity field evolves to form a weak polar anticyclonic circulation surrounded by a cyclonic zonal jet demonstrating the preferential transfer of energy towards zonal motions. In agreement with theoretical predictions, the energy spectrum becomes peaked near the Rhines wave number with a steep fall-off beyond, indicating the presence of a soft barrier to the energy transfer towards larger scales. DNS substantially confirmed the experimental observations.