Publications

Export 2 results:
Sort by: Author Title Type [ Year  (Desc)]
2013
Carnevale, GF, Kloosterziel RC, Orlandi P.  2013.  Inertial and barotropic instabilities of a free current in three-dimensional rotating flow. Journal of Fluid Mechanics. 725:117-151.   10.1017/jfm.2013.191   AbstractWebsite

A current in a homogeneous rotating fluid is subject to simultaneous inertial and barotropic instabilities. Inertial instability causes rapid mixing of streamwise absolute linear momentum and alters the vertically averaged velocity profile of the current. The resulting profile can be predicted by a construction based on absolute-momentum conservation. The alteration of the mean velocity profile strongly affects how barotropic instability will subsequently change the flow. If a current with a symmetric distribution of cyclonic and anticyclonic vorticity undergoes only barotropic instability, the result will be cyclones and anticyclones of the same shape and amplitude. Inertial instability breaks this symmetry. The combined effect of inertial and barotropic instability produces anticyclones that are broader and weaker than the cyclones. A two-step scheme for predicting the result of the combined inertial and barotropic instabilities is proposed and tested. This scheme uses the construction for the redistribution of streamwise absolute linear momentum to predict the mean current that results from inertial instability and then uses this equilibrated current as the initial condition for a two- dimensional simulation that predicts the result of the subsequent barotropic instability. Predictions are made for the evolution of a Gaussian jet and are compared with three-dimensional simulations for a range of Rossby numbers. It is demonstrated that the actual redistribution of absolute momentum in the three-dimensional simulations is well predicted by the construction used here. Predictions are also made for the final number and size of vortices that result from the combined inertial and barotropic instabilities.

2011
Carnevale, GF, Kloosterziel RC, Orlandi P, van Sommeren D.  2011.  Predicting the aftermath of vortex breakup in rotating flow. Journal of Fluid Mechanics. 669:90-119.   10.1017/s0022112010004945   AbstractWebsite

A method for predicting the outcome of vortex breakup in a rotating flow is introduced. The vortices dealt with here are subject to both centrifugal and barotropic instabilities. The prediction of the aftermath of the breakup relies on knowing how both centrifugal and barotropic instabilities would equilibrate separately. A theoretical model for non-linear equilibration in centrifugal instability is wedded to two-dimensional simulation of barotropic instability to predict the final vortices that emerge from the debris of the original vortex. This prediction method is tested against three-dimensional Navier-Stokes simulations. For vortices in which a rapid centrifugal instability triggers a slower barotropic instability, the method is successful both qualitatively and quantitatively. The skill of the prediction method decreases as the time scales of the two instabilities become comparable.