Quasi-two-dimensional flow on the polar beta-plane: Laboratory experiments

Espa, S, Cenedese A, Mariani M, Carnevale GF.  2009.  Quasi-two-dimensional flow on the polar beta-plane: Laboratory experiments. Journal of Marine Systems. 77:502-510.

Date Published:



beta-plane, generation, jets, topography, turbulence, vortices


Geophysical turbulence is strongly affected by the variation of the Coriolis parameter with latitude. This variation results in the so-called beta-effect, which forces energy from small-scales to be transferred preferentially into zonal motions. This effect results in the formation of narrow jet-like zonal flows that dominate the dynamics and act as transport barriers. Here, laboratory experiments are used to reproduce this effect in decaying turbulent flows. An electromagnetic cell is used to generate an initial field of vorticity in a rotating tank. Under conditions of quasigeostrophic flow, the beta-effect is produced by depth variation of the flow instead of variation of the Coriolis parameter. The effects of changing the container geometry and the overall fluid depth on the production of jets are investigated. The results suggest that this laboratory configuration can be used to model jet formation in the oceans and that increasing fluid depth is a practical way to decrease viscous effects. (C) 2008 Elsevier B.V. All rights reserved.