Experiments and simulations on coastal flows in the presence of a topographic slope

Citation:
Zavala Sanson, L, Serravall R, Carnevale GF, vanHeijst GJF.  2005.  Experiments and simulations on coastal flows in the presence of a topographic slope. Journal of Physical Oceanography. 35:2204-2218.

Date Published:

Nov

Keywords:

adjustment, barotropic vortices, bottom topography, circulation, currents, escarpment, evolution, rossby, shelf, statistical-mechanics, waves

Abstract:

The evolution of a barotropic coastal current in the presence of a bottom ramp-shaped topography is studied by means of laboratory experiments and numerical simulations. The experiments are performed in a rectangular rotating tank filled with freshwater. The fluid depth is shallow at one side of the domain and deeper at the other side, and both regions are divided by a narrow slope, whose depth contours are perpendicular to the long sides of the tank. A current approaching the slope is produced along one of the vertical walls, having the boundary at its right. Two configurations are analyzed: when the current flows from shallow to deep water and when flowing in the opposite direction. In the first scenario, the current is divided in two parts, one of them following the coastline. The other part of the current pairs with a cell of negative relative vorticity generated at the slope due to squeezing effects, forming a dipolar structure moving offshore, back toward the shallow side. In addition, a weak current moving inshore along the slope is clearly formed. In the second configuration, when the flow goes from deep to shallow water, a part of or even the whole current might be forced to move along the contours of the topography, away from the coast. In this case there is no dipole formation. The experiments are well reproduced by means of quasigeostrophic numerical simulations, which allow a more detailed systematic study of the influence of flow parameters such as the topography height and the width of the slope.

Notes:

n/a

Website

DOI:

10.1175/jpo2815.1