Export 6 results:
Sort by: [ Author  (Asc)] Title Type Year
A B C D E F G H I J K L M N O P Q R S [T] U V W X Y Z   [Show ALL]
Tanimoto, T, Lin C-J, Hadziioannou C, Igel H, Vernon F.  2016.  Estimate of Rayleigh-to-Love wave ratio in the secondary microseism by a small array at Piñon Flat observatory, California. Geophysical Research Letters. 43:11,173-11,181.   10.1002/2016GL071133   Abstract

Using closely located seismographs at Piñon Flat (PFO), California, for 1 year long record (2015), we estimated the Rayleigh-to-Love wave energy ratio in the secondary microseism (0.1–0.35 Hz) in four seasons. Rayleigh wave energy was estimated from a vertical component seismograph. Love wave energy was estimated from rotation seismograms that were derived from a small array at PFO. Derived ratios are 2–2.5, meaning that there is 2–2.5 times more Rayleigh wave energy than Love wave energy at PFO. In our previous study at Wettzell, Germany, this ratio was 0.9–1.0, indicating comparable energy between Rayleigh waves and Love waves. This difference suggests that the Rayleigh-to-Love wave ratios in the secondary microseism may differ greatly from region to region. It also implies that an assumption of the diffuse wavefield is not likely to be valid for this low frequency range as the equipartition of energy should make this ratio much closer.

Thomson, DJ, Vernon FL.  2016.  Some comments on the analysis of "big" scientific time series. Proceedings of the Ieee. 104:2220-2249.   10.1109/jproc.2016.2598218   AbstractWebsite

Experience with long time series from space, climate, seismology, and engineering has demonstrated the need for even longer data series with better precision, timing, and larger instrument arrays. We find that almost all the data we have examined, including atmospheric, seismic data, and dropped calls in cellular phone networks contain evidence for solar mode oscillations that couple into Earth systems through magnetic fields, and that these are often the strongest signals present. We show two examples suggesting that robustness has been overused and that many of the extremes in geomagnetic and space physics data may be the result of a superposition of numerous modes. We also present initial evidence that the evolution of turbulence in interplanetary space may be controlled by modes. Returning to the theme of "big data," our experience has been that theoretical predictions that spectra would be asymptotically unbiased have turned out to be largely irrelevant with very long time series primarily showing that we simply did not understand the problems. Data that were considered to have excessively variable spectra appear to evolve into processes with dense sets of modes. In short data blocks, these modes are not resolved and as the relative phase of the modes within the estimator varies, so does the apparent power. Ideas that data series become uncorrelated at modest distances in either time or space do not seem to be true with the long duration continuous time series data we have examined.

Thomson, DJ, Lanzerotti LJ, Vernon FL, Lessard MR, Smith LTP.  2007.  Solar modal structure of the engineering environment. Proceedings of the Ieee. 95:1085-1132.   10.1109/jproc.2007.894712   AbstractWebsite

This paper describes some unanticipated effects of the normal modes of the sun on engineering and scientific systems. we begin with historical, scientific, and statistical background, then present evidence for the effects of solar modes on various systems. Engineering evidence for these modes was first noticed in an investigation of communications satellite failures and second in a study of excessive dropped calls in cellular phone systems. The paper also includes several sections on multitaper estimates of spectra, canonical coherences, robust, and cyclostationary variants of multitapering, and related statistical techniques used to separate the various components of this complex system. In our attempt to understand this unexpected source of problems, we have found that solar modes are detectable in the interplanetary magnetic fields and energetic particles at the Ulysses spacecraft, five astronomical units from the Earth. These modes couple into the magnetosphere, the ionosphere, the geomagnetic field, and atmospheric pressure. Estimates of the power spectrum of data from solar radio telescopes and induced voltages on ocean cables show what appear to be solar modes at both lower and higher frequencies than the optically measured solar p-modes. Most surprisingly, these modes are easily detected in seismic data, where they literally shake the Earth.

Thomson, DJ, Vernon FL.  2015.  Unexpected, high-Q, low-frequency peaks in seismic spectra. Geophysical Journal International. 202:1690-1710.   10.1093/gji/ggv175   AbstractWebsite

It was established over a decade ago that the normal modes of the Earth are continuously excited at times without large earthquakes, but the sources of the 'seismic hum' have remained unresolved. In addition to the normal modes of the Earth, we show spectral lines in seismic data with frequencies which correspond closely to normal modes of the Sun. Moreover, the widths of the low-frequency lines in the seismic spectra are similar to those of solar modes and much narrower than those of the Earth's normal mode peaks. These seismic lines are highly coherent with magnetic fields measured on both the Geostationary Operations Environmental Satellite (GOES)-10 satellite and the Advanced Composition Explorer (ACE) spacecraft located at L1, 1.5 million km sunward of Earth suggesting that the solar modes are transmitted to the Earth by the interplanetary magnetic field and solar wind. The solar modes are split by multiples of a cycle/day and, surprisingly, by the 'quasi two-day' mode and other frequencies. Both the phase of the coherences and slight frequency offsets between seismic and geomagnetic data at observatories exclude the possibility that these effects are simply spurious responses of the seismometers to the geomagnetic field. We emphasize data from low-noise seismic observatories: Black Forest (BFO), Pion Flat (PFO), Eskdalemuir (ESK) and Obninsk (OBN). Horizontal components of seismic velocity show higher coherences with the external (ACE) magnetic field than do the vertical components. This effect appears to be larger near the seismic torsional, or T-mode, frequencies.

Tolstoy, M, Vernon FL, Orcutt JA, Wyatt FK.  2002.  Breathing of the seafloor: Tidal correlations of seismicity at Axial volcano. Geology. 30:503-506.   10.1130/0091-7613(2002)030<0503:botstc>;2   AbstractWebsite

Tidal effects on seafloor microearthquakes have been postulated, but the search has been hindered by a lack of continuous long-term data sets. Making this observation is further complicated by the need to distinguish between Earth and ocean tidal influences on the seafloor. In the summer of 1994, a small ocean-bottom seismograph array located 402 microseismic events, over a period of two months, on the summit caldera of Axial volcano on the Juan de Fuca Ridge. Harmonic tremor was also observed on all instruments, and Earth and ocean tides were recorded on tiltmeters installed within the seismometer packages. Microearthquakes show a strong correlation with tidal lows, suggesting that faulting is occurring preferentially when ocean loading is at a minimum. The harmonic tremor, interpreted as the movement of superheated fluid in cracks, also has a tidal periodicity.

Tytell, J, Vernon F, Hedlin M, Hedlin CD, Reyes J, Busby B, Hafner K, Eakins J.  2016.  The USARRAY transportable array as a platform for weather observation and research. Bulletin of the American Meteorological Society. 97:603-619.   10.1175/bams-d-14-00204.1   AbstractWebsite