Export 166 results:
Sort by: [ Author  (Asc)] Title Type Year
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
Atwater, T, Sclater J, Sandwell D, Severinghaus J, Marlow M.  1993.  Fracture zone traces across the North Pacific Cretaceous Quiet Zone and their tectonic implications. The Mesozoic Pacific : geology, tectonics, and volcanism : a volume in memory of Sy Schlanger. ( Pringle MS, Sager WW, Sliter WV, Stein S, Eds.).:137-154., Washington, DC: American Geophysical Union Abstract
Baer, G, Schattner U, Wachs D, Sandwell D, Wdowinski S, Frydman S.  2002.  The lowest place on Earth is subsiding - An InSAR (interferometric synthetic aperture radar) perspective. Geological Society of America Bulletin. 114:12-23.   10.1130/0016-7606(2002)114<0012:tlpoei>;2   AbstractWebsite

Since the early 1990s, sinkholes and wide, shallow subsidence features (WSSFs) have become major problems along the Dead Sea shores in Israel and Jordan. Sinkholes are readily observed in the field, but their locations and timing are unpredictable. WSSFs are often difficult to observe in the field. However, once identified, they delineate zones of instability and increasing hazard. In this study we identify, characterize, and measure rates of subsidence along the Dead Sea shores by the interferometric synthetic aperture radar (InSAR) technique. We analyze 16 SAR scenes acquired during the years 1992 to 1999 by the European Remote Sensing ERS-1 and ERS-2 satellites. The interferograms span periods of between 2 and 71 months. WSSFs are observed in the Lisan Peninsula and along the Dead Sea shores, in a variety of appearances, including circular and elongate coastal depressions (a few hundred meters to a few kilometers in length), depressions in ancient alluvial fans, and depressions along salt-diapir margins. Phase differences measured in our interferograms correspond to subsidence rates generally in the range of 0-20 mm/yr within the studied period, with exceptional high rates that exceed 60 mm/yr in two specific regions. During the study period, the level of the Dead Sea and of the associated ground water has dropped by similar to6 m. This water-level drop within an aquifer overlying fine-grained, marly layers, would be expected to have caused aquifer-system consolidation resulting in gradual subsidence. Comparison of our InSAR observations with calculations of the expected consolidation shows that in areas where marl layers are known to compose part of the upper 30 m of the profile, estimated consolidation settlements are of the order of the measured subsidence. Our observations also show that in certain locations, subsidence appears to be structurally controlled by faults, seaward landslides, and salt domes. Gradual subsidence is unlikely to be directly related to the sinkholes, excluding the use of the WSSFs features as predictable precursors to sinkhole formation.

Baer, G, Sandwell D, Williams S, Bock Y, Shamir G.  1999.  Coseismic deformation associated with the November 1995, M-w=7.1 Nuweiba earthquake, Gulf of Elat (Aqaba), detected by synthetic aperture radar interferometry. Journal of Geophysical Research-Solid Earth. 104:25221-25232.   10.1029/1999jb900216   AbstractWebsite

The November 22, 1995, M-w=7.1 Nuweiba earthquake occurred along one of the left-stepping segments of the Dead Sea Transform in the Gulf of flat (Aqaba). Although it was the largest earthquake along this fault in the last few centuries, little is yet known about the geometry of the rupture, the slip distribution along it, and the nature of postseismic deformation following the main shock. In this study we examine the surface deformation pattern during the coseismic phase of the earthquake in an attempt to better elucidate the earthquake rupture process. As the entire rupture zone was beneath the waters of the Gulf, and there is very little Global Positioning System (GPS) data available in the region for the period spanning the earthquake, interferometric synthetic aperture radar (INSAR) provides the only source of information of surface deformation associated with this earthquake. We chose four synthetic aperture radar (SAR) scenes of about 90x90 km each spanning the rupture area, imaged by the ERS-1 and ERS-2 satellites. The coseismic interferograms show contours of equal satellite-to-ground range changes that correspond to surface displacements due to the earthquake rupture. Interferograms that span the earthquake by 1 week show similar fringe patterns' as those that span the earthquake by 6 months, suggesting that postseismic deformation is minor or confined to the first week after the earthquake. A high displacement gradient is seen on the western side of the Gulf, 20-40 km south of flat and Aqaba, where the total satellite-to-ground range changes are at least 15 cm. The displacement gradient is relatively uniform on the eastern side of the Gulf and the range changes are less than 10 cm. To interpret these results, we compare them to synthetic interferograms generated by elastic dislocation models with a variety of fault parameters. Although selecting the best fit fault parameters is nonunique, we are able to generate a group of simplified model interferograms that provide a reasonable fit to the coseismic interferogram and serve to constrain the location of the fault. The present analysis shows that if the rupture reached the Gulf-bottom surface, the mean sinistral slip along the fault is constrained to about 1.4 m. If surface rupture did not occur, the average sinistral slip is constrained to the range of 1.4-3 m for a fault patch buried 0-4 km below the Gulf-bottom Surface, respectively, with a minor normal component.

Baer, G, Shamir G, Sandwell D, Bock Y.  2001.  Crustal deformation during 6 years spanning the M (sub w) = 7.2 1995 Nuweiba earthquake, analyzed by Interferometric Synthetic Aperture Radar. Israel Journal of Earth-Sciences. 50( Baer G, Wdowinski S, Eds.).:9-22., Jerusalem, Israel (ISR): Laser Pages Publishing, Jerusalem AbstractWebsite

The November 22, 1995, M (sub w) = 7.2 Nuweiba earthquake occurred along one of the left-stepping segments of the Dead Sea Transform in the Gulf of Elat (Aqaba). We examine the surface deformation patterns in the region by Interferometric Synthetic Aperture Radar (InSAR) for the period 1993 to 1999, which includes the end of one seismic cycle and the beginning of the next. Because the main rupture was under water, ERS coverage is limited to distances of approximately 5 km or more away from the rupture. Pre-earthquake interferograms do not show any detectable deformation along the Gulf. Coseismic interferograms show deformation at distances of up to 50 km from the main rupture, with the highest fringe rate (strain) NW of the rupture termination. Coseismic phase gradient maps show triggered slip along faults parallel to the main rupture (sinistral or normal with the Gulf side down) along the western shore of the Gulf, and in a belt of extensional faults along the eastern shore, striking at angles of about 30 degrees to the major rupture. Postseismic deformation is observed only in a time window of up to 6 months following the mainshock. It was concentrated in the region of the high coseismic strain, and seems to be related to the M (sub L) <4.5 aftershocks in the respective time window.

Barbot, S, Fialko Y, Sandwell D.  2009.  Three-dimensional models of elastostatic deformation in heterogeneous media, with applications to the Eastern California Shear Zone. Geophysical Journal International. 179:500-520.   10.1111/j.1365-246X.2009.04194.x   AbstractWebsite

P>We present a semi-analytic iterative procedure for evaluating the 3-D deformation due to faults in an arbitrarily heterogeneous elastic half-space. Spatially variable elastic properties are modelled with equivalent body forces and equivalent surface traction in a 'homogenized' elastic medium. The displacement field is obtained in the Fourier domain using a semi-analytic Green function. We apply this model to investigate the response of 3-D compliant zones (CZ) around major crustal faults to coseismic stressing by nearby earthquakes. We constrain the two elastic moduli, as well as the geometry of the fault zones by comparing the model predictions to Synthetic Aperture Radar inferferometric (InSAR) data. Our results confirm that the CZ models for the Rodman, Calico and Pinto Mountain faults in the Eastern California Shear Zone (ECSZ) can explain the coseismic InSAR data from both the Landers and the Hector Mine earthquakes. For the Pinto Mountain fault zone, InSAR data suggest a 50 per cent reduction in effective shear modulus and no significant change in Poisson's ratio compared to the ambient crust. The large wavelength of coseismic line-of-sight displacements around the Pinto Mountain fault requires a fairly wide (similar to 1.9 km) CZ extending to a depth of at least 9 km. Best fit for the Calico CZ, north of Galway Dry Lake, is obtained for a 4 km deep structure, with a 60 per cent reduction in shear modulus, with no change in Poisson's ratio. We find that the required effective rigidity of the Calico fault zone south of Galway Dry Lake is not as low as that of the northern segment, suggesting along-strike variations of effective elastic moduli within the same fault zone. The ECSZ InSAR data is best explained by CZ models with reduction in both shear and bulk moduli. These observations suggest pervasive and widespread damage around active crustal faults.

Barbot, S, Fialko Y, Sandwell D.  2008.  Effect of a compliant fault zone on the inferred earthquake slip distribution. Journal of Geophysical Research-Solid Earth. 113   10.1029/2007jb005256   AbstractWebsite

We present a new semi-analytic method to evaluate the deformation due to a screw dislocation in arbitrarily heterogeneous and/or anisotropic elastic half plane. The method employs integral transformations to reduce the governing partial differential equations to the integral Fredholm equation of the second kind. Dislocation sources, as well as spatial perturbations in the elastic properties are modeled using equivalent body forces. The solution to the Fredholm equation is obtained in the Fourier domain using a method of successive over-relaxation, and is mapped into the spatial domain using the inverse Fast Fourier Transform. We apply this method to investigate the effect of a soft damage zone around an earthquake fault on the co-seismic displacement field, and on the earthquake slip distribution inferred from inversions of geodetic data. In the presence of a kilometer-wide damage zone with a reduction of the effective shear modulus of a factor of 2, inversions that assume a laterally homogeneous model tend to underestimate the amount of slip in the middle of the seismogenic layer by as much as 20%. This bias may accentuate the inferred maxima in the seismic moment release at depth between 3-6 km suggested by previous studies of large strike-slip earthquakes.

Bassett, D, Sandwell DT, Fialko Y, Watts AB.  2016.  Upper-plate controls on co-seismic slip in the 2011 magnitude 9.0 Tohoku-oki earthquake. Nature. 531:92-96.: Nature Publishing Group   10.1038/nature16945   Abstract

The March 2011 Tohoku-oki earthquake was only the second giant (moment magnitude Mw ≥ 9.0) earthquake to occur in the last 50 years and is the most recent to be recorded using modern geophysical techniques. Available data place high-resolution constraints on the kinematics of earthquake rupture, which have challenged prior knowledge about how much a fault can slip in a single earthquake and the seismic potential of a partially coupled megathrust interface. But it is not clear what physical or structural characteristics controlled either the rupture extent or the amplitude of slip in this earthquake. Here we use residual topography and gravity anomalies to constrain the geological structure of the overthrusting (upper) plate offshore northeast Japan. These data reveal an abrupt southwest–northeast-striking boundary in upper-plate structure, across which gravity modelling indicates a south-to-north increase in the density of rocks overlying the megathrust of 150–200 kilograms per cubic metre. We suggest that this boundary represents the offshore continuation of the Median Tectonic Line, which onshore juxtaposes geological terranes composed of granite batholiths (in the north) and accretionary complexes (in the south). The megathrust north of the Median Tectonic Line is interseismically locked, has a history of large earthquakes (18 with Mw > 7 since 1896) and produced peak slip exceeding 40 metres in the Tohoku-oki earthquake. In contrast, the megathrust south of this boundary has higher rates of interseismic creep, has not generated an earthquake with MJ > 7 (local magnitude estimated by the Japan Meteorological Agency) since 1923, and experienced relatively minor (if any) co-seismic slip in 20111. We propose that the structure and frictional properties of the overthrusting plate control megathrust coupling and seismogenic behaviour in northeast Japan.

Becker, JJ, Sandwell DT.  2008.  Global estimates of seafloor slope from single-beam ship soundings. Journal of Geophysical Research-Oceans. 113   10.1029/2006jc003879   AbstractWebsite

Rough topography on the ocean floor is a source of ocean mixing which is of interest to both physical oceanography and climate science. Most mixing has been attributed to high slopes of the large-scale structures of the deep ocean floor such as seamounts, continental margins, and mid-ocean ridge axes. In this paper, we show the small-scale but ubiquitous abyssal hills and fracture zones dominate the global map of rough topography. Much of this rugged seafloor occurs in the Southern Ocean on the flanks of the Pacific-Antarctic Rise and Southwest Indian Ridge. We present our results as a global map of the mean slope of the ocean floor, and as a global map of the ocean floor above the M(2) critical slope. We compare our results to multibeam and satellite bathymetry data to show that satellite bathymetry is not a valid proxy for multibeam measurements, but edited single-beam sonar data are adequate to provide a global perspective on features with horizontal wavelengths as small as 2 km.

Becker, JJ, Sandwell DT, Smith WHF, Braud J, Binder B, Depner J, Fabre D, Factor J, Ingalls S, Kim SH, Ladner R, Marks K, Nelson S, Pharaoh A, Trimmer R, Von Rosenberg J, Wallace G, Weatherall P.  2009.  Global Bathymetry and Elevation Data at 30 Arc Seconds Resolution: SRTM30_PLUS. Marine Geodesy. 32:355-371.   10.1080/01490410903297766   AbstractWebsite

A new 30-arc second resolution global topography/bathymetry grid (SRTM30_PLUS) has been developed from a wide variety of data sources. Land and ice topography comes from the SRTM30 and ICESat topography, respectively. Ocean bathymetry is based on a new satellite-gravity model where the gravity-to-topography ratio is calibrated using 298 million edited soundings. The main contribution of this study is the compilation and editing of the raw soundings, which come from NOAA, individual scientists, SIO, NGA, JAMSTEC, IFREMER, GEBCO, and NAVOCEANO. The gridded bathymetry is available for ftp download in the same format as the 33 tiles of SRTM30 topography. There are 33 matching tiles of source identification number to convey the provenance of every grid cell. The raw sounding data, converted to a simple common format, are also available for ftp download.

Brooks, BA, Foster J, Sandwell D, Wolfe CJ, Okubo P, Poland M, Myer D.  2008.  Magmatically triggered slow slip at Kilauea volcano, Hawaii. Science. 321:1177-1177.   10.1126/science.1159007   AbstractWebsite

We demonstrate that a recent dike intrusion probably triggered a slow fault-slip event (SSE) on Kilauea volcano's mobile south flank. Our analysis combined models of Advanced Land Observing Satellite interferometric dike-intrusion displacement maps with continuous Global Positioning System (GPS) displacement vectors to show that deformation nearly identical to four previous SSEs at Kilauea occurred at far-field sites shortly after the intrusion. We model stress changes because of both secular deformation and the intrusion and find that both would increase the Coulomb failure stress on possible SSE slip surfaces by roughly the same amount. These results, in concert with the observation that none of the previous SSEs at Kilauea was directly preceded by intrusions but rather occurred during times of normal background deformation, suggest that both extrinsic (intrusion-triggering) and intrinsic (secular fault creep) fault processes can lead to SSEs.

Cheney, RE, Douglas BC, McAdoo DC, Sandwell DT.  1986.  Geodetic and oceanographic applications of satellite altimetry. Space geodesy and geodynamics. ( Anderson A, Cazenave A, Eds.)., London, United Kingdom (GBR): Academic Press, London AbstractWebsite
Cheney, RE, Douglas BC, Sandwell DT, Marsh JG, Martin TV.  1984.  Applications of Satellite Altimetry to Oceanography and Geophysics. Marine Geophysical Researches. 7:17-32.   10.1007/bf00305408   AbstractWebsite

Satellite-borne altimeters have had a profound impact on geodesy, geophysics, and physical oceanography. To first order approximation, profiles of sea surface height are equivalent to the geoid and are highly correlated with seafloor topography for wavelengths less than 1000 km. Using all available Geos-3 and Seasat altimeter data, mean sea surfaces and geoid gradient maps have been computed for the Bering Sea and the South Pacific. When enhanced using hill-shading techniques, these images reveal in graphic detail the surface expression of seamounts, ridges, trenches, and fracture zones. Such maps are invaluable in oceanic regions where bathymetric data are sparse. Superimposed on the static geoid topography is dynamic topography due to ocean circulation. Temporal variability of dynamic height due to oceanic eddies can be determined from time series of repeated altimeter profiles. Maps of sea height variability and eddy kinetic energy derived from Geos-3 and Seasat altimetry in some cases represent improvements over those derived from standard oceanographic observations. Measurement of absolute dynamic height imposes stringent requirements on geoid and orbit accuracies, although existing models and data have been used to derive surprisingly realistic global circulation solutions. Further improvement will only be made when advances are made in geoid modeling and precision orbit determination. In contrast, it appears that use of altimeter data to correct satellite orbits will enable observation of basin-scale sea level variations of the type associated with climatic phenomena.

Craig, CH, Sandwell DT.  1988.  Global Distribution of Seamounts from Seasat Profiles. Journal of Geophysical Research-Solid Earth and Planets. 93:10408-10420.   10.1029/JB093iB09p10408   AbstractWebsite

Bathymetry profiles and contour charts have been used to study the distribution of seamounts in the deep ocean basins, but only a small fraction of the seafloor has been sampled by ships. At the present exploration rate it will take several centuries to map significant portions of the seafloor topography. Satellite altimetry, which maps the topography of the equipotential sea surface, is a promising tool for studying the gravity fields of seamounts because all ocean basins can be sampled in a couple of years. Using a model of a Gaussian-shaped seamount loading a thin elastic lithosphere, we develop a new technique for measuring basic characteristics of a seamount from a single satellite altimeter profile. The model predicts that the seamount diameter is equal to the peak-to-trough distance along the vertical deflection profile and that the overall diameter of the signature reveals the age of the lithosphere when the seamount formed. Moreover, the model suggests that these two measurements are relatively insensitive to the cross-track location of the seamount. We confirm these model predictions using Seasat altimeter profiles crossing 14 well surveyed seamounts in the Pacific. We then apply the measurement technique to 26 × 106 million kilometers of Seasat profiles resulting in a new global set of seamount locations. Approximately one quarter of the seamounts identified in Seasat profiles were previously uncharted. Modeling suggests that there is no direct relationship between the size of a seamount and its signature in the geoid; therefore the set of locations is not a straightforward sampling of the total seamount population, but is weighted toward seamounts which are poorly compensated. A preliminary analysis indicates considerable variations in population density and type across the oceans; most notable among them are the absence of seamounts in the Atlantic, variations in population density across large age-offset fracture zones in the Pacific, the prevalence of small signatures in the Indian Ocean, and the existence of linear trends in the large seamounts of the west Pacific.

Crowell, BW, Bock Y, Sandwell DT, Fialko Y.  2013.  Geodetic investigation into the deformation of the Salton Trough. Journal of Geophysical Research-Solid Earth. 118:5030-5039.   10.1002/jgrb.50347   AbstractWebsite

The Salton Trough represents a complex transition between the spreading center in Baja California and the strike-slip San Andreas fault system and is one of the most active zones of deformation and seismicity in California. We present a high-resolution interseismic velocity field for the Salton Trough derived from 74 continuous GPS sites and 109 benchmarks surveyed in three GPS campaigns during 2008-2009 and previous surveys between 2000 and 2005. We also investigate small-scale deformation by removing the regional velocity field predicted by an elastic block model for Southern California from the observed velocities. We find a total extension rate of 11mm/yr from the Mesquite Basin to the southern edge of the San Andreas Fault, coupled with 15mm/yr of left-lateral shear, the majority of which is concentrated in the southern Salton Sea and Obsidian Buttes and is equivalent to 17mm/yr oriented in the direction of the San Andreas Fault. Differential shear strain is exclusively localized in the Brawley Seismic Zone, and dilatation rate indicates widespread extension throughout the zone. In addition, we infer clockwise rotation of 10 degrees/Ma, consistent with northwestward propagation of the Brawley Seismic Zone over geologic time.

DeSanto, JB, Sandwell DT, Chadwell CD.  2016.  Seafloor geodesy from repeated sidescan sonar surveys. Journal of Geophysical Research-Solid Earth. 121:4800-4813.   10.1002/2016jb013025   AbstractWebsite

Accurate seafloor geodetic methods are critical to the study of marine natural hazards such as megathrust earthquakes, landslides, and volcanoes. We propose digital image correlation of repeated shipboard sidescan sonar surveys as a measurement of seafloor deformation. We test this method using multibeam surveys collected in two locales: 2500m deep lightly sedimented seafloor on the flank of a spreading ridge and 4300m deep heavily sedimented seafloor far from any plate boundary. Correlation of these surveys are able to recover synthetic displacements in the across-track (range) direction accurate to within 1m and in the along-track (azimuth) direction accurate to within 1-10m. We attribute these accuracies to the inherent resolution of sidescan data being better in the range dimension than the azimuth dimension. These measurements are primarily limited by the accuracy of the ship navigation. Dual-frequency GPS units are accurate to approximate to 10cm, but single-frequency GPS units drift on the order of 1m/h and are insufficient for geodetic application.

Detrick, RS, Von Herzen RP, Parsons B, Sandwell D, Dougherty M.  1986.  Heat-Flow Observations on the Bermuda Rise and Thermal Models of Midplate Swells. Journal of Geophysical Research-Solid Earth and Planets. 91:3701-3723.   10.1029/JB091iB03p03701   AbstractWebsite

The Bermuda Rise is a broad topographic swell which is apparent in both residual depth and geoid anomaly maps of the western North Atlantic. The magnitudes of the depth and geoid anomalies associated with the Bermuda Rise are similar to the anomalies associated with other swells surrounding recent volcanic islands (e.g., Hawaii), suggesting that despite the lack of recent volcanism on Bermuda, the rise has a similar origin to other midplate swells. Results are reported from 171 new heat flow measurements at seven carefully selected sites on the Bermuda Rise and the surrounding seafloor. Off the Bermuda Rise the basement depths are generally shallower and the heat flow higher than either the plate or boundary layer models predict, with the measured heat flow apparently reaching a uniform value of about 50 mW m−2 on 120 m.y. old crust. On the Bermuda Rise the heat flow is significantly higher (57.4±2.6 mW m−2) than off the swell (49.5±1.7 mW m−2). The magnitude of the anomalous heat flux (8–10 mW m−2) is comparable to that previously found along the older portion of the Hawaiian Swell near Midway. The existence of higher heat flow on both the Hawaiian Swell and Bermuda Rise indicates that these features fundamentally have a thermal origin. The differences in the shape, uplift, and subsidence histories of the Hawaiian Swell and Bermuda Rise can be quantitatively explained by the different absolute velocities of the Pacific and North American plates moving across a distributed heat source in the underlying mantle. Two-dimensional numerical convection models indicate that the observed depth, geoid, and heat flow anomalies are consistent with simple convection models in which the lower part of the thermally defined plate acts as the upper thermal boundary layer of the convection.

Douglas, BC, Agreen RW, Sandwell DT.  1984.  Observing Global Ocean Circulation with Seasat Altimeter Data. Marine Geodesy. 8:67-83. AbstractWebsite
Fialko, Y, Sandwell D, Agnew D, Simons M, Shearer P, Minster B.  2002.  Deformation on nearby faults induced by the 1999 Hector Mine earthquake. Science. 297:1858-1862.   10.1126/science.1074671   AbstractWebsite

Interferometric Synthetic Aperture Radar observations of surface deformation due to the 1999 Hector Mine earthquake reveal motion on several nearby faults of the eastern California shear zone. We document both vertical and horizontal displacements of several millimeters to several centimeters across kilometer-wide zones centered on pre-existing faults. Portions of some faults experienced retrograde (that is, opposite to their long-term geologic slip) motion during or shortly after the earthquake. The observed deformation likely represents elastic response of compliant fault zones to the permanent co-seismic stress changes. The induced fault displacements imply decreases in the effective shear modulus within the kilometer-wide fault zones, indicating that the latter are mechanically distinct from the ambient crustal rocks.

Fialko, Y, Sandwell D, Simons M, Rosen P.  2005.  Three-dimensional deformation caused by the Bam, Iran, earthquake and the origin of shallow slip deficit. Nature. 435:295-299.   10.1038/nature03425   AbstractWebsite

Our understanding of the earthquake process requires detailed insights into how the tectonic stresses are accumulated and released on seismogenic faults. We derive the full vector displacement field due to the Bam, Iran, earthquake of moment magnitude 6.5 using radar data from the Envisat satellite of the European Space Agency. Analysis of surface deformation indicates that most of the seismic moment release along the 20-km-long strike-slip rupture occurred at a shallow depth of 4 - 5 km, yet the rupture did not break the surface. The Bam event may therefore represent an end-member case of the 'shallow slip deficit' model, which postulates that coseismic slip in the uppermost crust is systematically less than that at seismogenic depths ( 4 - 10 km). The InSAR-derived surface displacement data from the Bam and other large shallow earthquakes suggest that the uppermost section of the seismogenic crust around young and developing faults may undergo a distributed failure in the interseismic period, thereby accumulating little elastic strain.

Gahagan, LM, Scotese CR, Royer JY, Sandwell DT, Winn JK, Tomlins RL, Ross MI, Newman JS, Muller RD, Mayes CL, Lawver LA, Heubeck CE.  1988.  Tectonic Fabric Map of the Ocean Basins from Satellite Altimetry Data. Tectonophysics. 155:1-&.   10.1016/0040-1951(88)90258-2   AbstractWebsite

Satellite altimetry data provide a new source of information on the bathymetry of the ocean floor. The tectonic fabric of the oceans (i.e., the arrangement of fracture zones, ridges, volcanic plateaus and trenches) is revealed by changes in the horizontal gravity gradient as recorded by satellite altimetry measurements. SEASAT and GEOSAT altimetry data have been analyzed and a global map of the horizontal gravity gradient has been produced that can be used to identify a variety of marine tectonic features. The uniformity of the satellite coverage provides greater resolution and continuity than maps based solely on ship-track data. This map is also the first global map to incorporate the results of the GEOSAT mission, and as a result, new tectonic features are revealed at high southerly latitudes.This map permits the extension of many tectonic features well beyond what was previously known. For instance, various fracture zones, such as the Ascension, Tasman, and Udintsev fracture zones, can be extended much closer to adjacent coninental margins. The tectonic fabric map also reveals many features that have not been previously mapped. These features include extinct ridges, minor fracture zone lineations and seamounts. In several areas, especially across aseismic plateaus or along the margins of the continents, the map displays broad gravity anomalies whose origin may be related to basement structures.

Garcia, ES, Sandwell DT, Luttrell KM.  2015.  An iterative spectral solution method for thin elastic plate flexure with variable rigidity. Geophysical Journal International. 200:1010-1026.   10.1093/gji/ggu449   AbstractWebsite

Thin plate flexure theory provides an accurate model for the response of the lithosphere to vertical loads on horizontal length scales ranging from tens to hundreds of kilometres. Examples include flexure at seamounts, fracture zones, sedimentary basins and subduction zones. When applying this theory to real world situations, most studies assume a locally uniform plate thickness to enable simple Fourier transform solutions. However, in cases where the amplitude of the flexure is prominent, such as subduction zones, or there are rapid variations in seafloor age, such as fracture zones, these models are inadequate. Here we present a computationally efficient algorithm for solving the thin plate flexure equation for non-uniform plate thickness and arbitrary vertical load. The iterative scheme takes advantage of the 2-D fast Fourier transform to perform calculations in both the spatial and spectral domains, resulting in an accurate and computationally efficient solution. We illustrate the accuracy of the method through comparisons with known analytic solutions. Finally, we present results from three simple models demonstrating the differences in trench outer rise flexure when 2-D variations in plate rigidity and applied bending moment are taken into account. Although we focus our analysis on ocean trench flexure, the method is applicable to other 2-D flexure problems having spatial rigidity variations such as seamount loading of a thermally eroded lithosphere or flexure across the continental-oceanic crust boundary.

Garcia, ES, Sandwell DT, Smith WHF.  2014.  Retracking CryoSat-2, Envisat and Jason-1 radar altimetry waveforms for improved gravity field recovery. Geophysical Journal International. 196:1402-1422.   10.1093/gji/ggt469   AbstractWebsite

Improving the accuracy of the marine gravity field requires both improved altimeter range precision and dense track coverage. After a hiatus of more than 15 yr, a wealth of suitable data is now available from the CryoSat-2, Envisat and Jason-1 satellites. The range precision of these data is significantly improved with respect to the conventional techniques used in operational oceanography by retracking the altimeter waveforms using an algorithm that is optimized for the recovery of the short-wavelength geodetic signal. We caution that this new approach, which provides optimal range precision, may introduce large-scale errors that would be unacceptable for other applications. In addition, CryoSat-2 has a new synthetic aperture radar (SAR) mode that should result in higher range precision. For this new mode we derived a simple, but approximate, analytic model for the shape of the SAR waveform that could be used in an iterative least-squares algorithm for estimating range. For the conventional waveforms, we demonstrate that a two-step retracking algorithm that was originally designed for data from prior missions (ERS-1 and Geosat) also improves precision on all three of the new satellites by about a factor of 1.5. The improved range precision and dense coverage from CryoSat-2, Envisat and Jason-1 should lead to a significant increase in the accuracy of the marine gravity field.

Gille, ST, Yale MM, Sandwell DT.  2000.  Global correlation of mesoscale ocean variability with seafloor roughness from satellite altimetry. Geophysical Research Letters. 27:1251-1254.   10.1029/1999gl007003   AbstractWebsite

Both seafloor bathymetry and eddy kinetic energy at the ocean surface can be estimated by making use of satellite altimeters. Comparing the two quantities shows that in regions of the ocean deeper than about 4800 m, surface eddy kinetic energy is greater over smooth abyssal plains than over rough bathymetry, while the opposite is true in shallower waters. Thus in the deep ocean, bottom roughness may dissipate eddy kinetic energy. A simple model indicates that the dissipation rate increases as root-mean-squared bottom roughness increases from 0 to 250 m and decreases to negative values (implying eddy generation) for higher roughness.

Gonzalez-Ortega, A, Fialko Y, Sandwell D, Nava-Pichardo FA, Fletcher J, Gonzalez-Garcia J, Lipovsky B, Floyd M, Funning G.  2014.  El Mayor-Cucapah ( M-w 7.2) earthquake: Early near-field postseismic deformation from InSAR and GPS observations. Journal of Geophysical Research-Solid Earth. 119:1482-1497.   10.1002/2013jb010193   AbstractWebsite

El Mayor-Cucapah earthquake occurred on 4 April 2010 in northeastern Baja California just south of the U.S.-Mexico border. The earthquake ruptured several previously mapped faults, as well as some unidentified ones, including the Pescadores, Borrego, Paso Inferior and Paso Superior faults in the Sierra Cucapah, and the Indiviso fault in the Mexicali Valley and Colorado River Delta. We conducted several Global Positioning System (GPS) campaign surveys of preexisting and newly established benchmarks within 30km of the earthquake rupture. Most of the benchmarks were occupied within days after the earthquake, allowing us to capture the very early postseismic transient motions. The GPS data show postseismic displacements in the same direction as the coseismic displacements; time series indicate a gradual decay in postseismic velocities with characteristic time scales of 669days and 203days, assuming exponential and logarithmic decay, respectively. We also analyzed interferometric synthetic aperture radar (InSAR) data from the Envisat and ALOS satellites. The main deformation features seen in the line-of-sight displacement maps indicate subsidence concentrated in the southern and northern parts of the main rupture, in particular at the Indiviso fault, at the Laguna Salada basin, and at the Paso Superior fault. We show that the near-field GPS and InSAR observations over a time period of 5months after the earthquake can be explained by a combination of afterslip, fault zone contraction, and a possible minor contribution of poroelastic rebound. Far-field data require an additional mechanism, most likely viscoelastic relaxation in the ductile substrate.

Gonzalez-Ortega, JA, Gonzalez-Garcia JJ, Sandwell DT.  2018.  Interseismic velocity field and seismic moment release in northern Baja California, Mexico. Seismological Research Letters. 89:526-533.   10.1785/0220170133   AbstractWebsite

We have analyzed all available continuous Global Positioning System (cGPS) and campaign-mode GPS data from northern Baja California, Mexico, covering the 1993.1-2010.1 period to obtain a consistent interseismic velocity field to derive a continuous strain-rate field. The analysis shows concentrations of high strain rate along the Imperial/Cerro Prieto fault system extending from the Salton Sea to the Gulf of California, with strike-slip faulting consistent with principal strain axes direction within the area of largest historical and instrumental seismic release. We translated the strain rate into geodetic moment accumulation rate to evaluate the potential of seismic activity of the region and compare with the actual seismic release of historical and instrumental earthquake catalog. Comparison of regional moment accumulation rate based on geodesy (M-0(g) = 6.3 +/- 1.3 x 10(18) N center dot m/yr) to the corresponding moment release rate by earthquakes (M-0(s) = 2.7 +/- 0.8 x 10(18) N center dot m/yr) highlights a moment rate deficit equivalent to an M-w 7.5-7.8 earthquake. As part of this accumulated moment was released by the recent 2010 M-w 7.2 El Mayor-Cucapah earthquake, these results can provide input constraints on earthquake forecasts for the northern Baja California fault system.