Publications

Export 168 results:
Sort by: Author Title Type [ Year  (Desc)]
1997
Smith, WHF, Sandwell DT.  1997.  Measured and estimated seafloor topography : [world]. Research publication / World Data Center-A for Marine Geology and Geophysics RP-1. , Boulder, COLa Jolla, CA: National Geophysical Data Center, NOAA ;Geological Data Center, Scripps Institution of Oceanography, Abstract
n/a
1996
Levitt, DA, Sandwell DT.  1996.  Modal depth anomalies from multibeam bathymetry: Is there a south Pacific superswell? Earth and Planetary Science Letters. 139:1-16.   10.1016/0012-821x(95)00247-a   AbstractWebsite

A region west of the southern East Pacific Rise (SEPR), between the Marquesas and Austral Fracture Zones has previously been found to exhibit anomalous depth-age behavior, based on gridded bathymetry and single-beam soundings. Since gridded bathymetry has been shown to be unsuitable for some geophysical analysis and since the area is characterized by unusually robust volcanism, the magnitude and regional extent of depth anomalies over the young eastern flank of the so called 'South Pacific Superswell' are re-examined using a mode-seeking estimation procedure on data obtained from several recent multibeam surveys. The modal technique estimates a representative seafloor depth, based on the assumption that bathymetry from non-edifice and edifice-populated seafloor has a low and a high standard deviation, respectively. Flat seafloor depth values are concentrated in a few bins which correspond to the mode. This method estimates a representative seafloor value even on seafloor for which more than 90% of coverage is dominated by ridge and seamount clusters, where the mean and median estimates may be shallow by hundreds of meters. Where volcanism-related bias is moderate, the mode, mean and median estimates are close. Depth-age results indicate that there is only a small anomaly (< 200 m) over 15-35 Ma Pacific Plate seafloor with little age-dependent shallowing, suggesting that the lithosphere east of the main hot-spot locations on the 'superswell' is normal. An important implication is that, in sparsely surveyed areas, depths from ETOPO-5 are significantly different from true depths even at large scales (similar to 1000 km) and thus are unsuitable for investigations of anomalies associated with depth-age regressions. We find that seafloor slopes on conjugate profiles of the Pacific and Nazca Plates from 15 to 35 Ma are both slightly lower than normal, but are within the global range. Proximate to the SEPR, seafloor slopes are very low (218 m Myr(-1/2)) on the Pacific Plate (0-22 Ma) and slightly high (similar to 410 m Myr(-1/2)) on the Nazca Plate (0-8 Ma); slopes for older Pacific seafloor (22-37 Ma) are near normal (399 m Myr(-1/2)). Seafloor slopes are even lower north of the Marquesas Fracture Zone but are highly influenced by the Marquesas Swell. We find that the low subsidence rate on young Pacific seafloor cannot be explained by a local hot-spot or a small-scale convective model exclusively and a stretching/thickening model requires implausible crustal thickness variation (similar to 30%).

Small, C, Sandwell D.  1996.  Sights unseen. Natural History. 105:28-33. AbstractWebsite
n/a
Sandwell, DT.  1996.  Exploration of the remote ocean basins with satellite altimeters. McGraw-Hill 1996 yearbook of science & technology. :178-182., Maidenhead: McGraw-Hill Abstract
n/a
1995
Schubert, G, Sandwell DT.  1995.  A Global Survey of Possible Subduction Sites on Venus. Icarus. 117:173-196.   10.1006/icar.1995.1150   AbstractWebsite

About 10,000 km of trenches in chasmata and coronae have been identified as possible sites of retrograde subduction on Venus. All the sites have narrow deep trenches elongate along strike with arcuate planforms, ridge-trench-outer rise topographic profiles typical of terrestrial subduction zones, large outer rise curvatures >10(-7) m(-1), fractures parallel to the strike of the trench on the outer trench wall and outer rise, and no cross-strike fractures across the trench. Both the northern and southern margins of Latona Corona are possible subduction sites. Identification of a major graben between the two principal outer ridges in southern Latona Corona is evidence of back-are extension in the corona; the amount of extension is estimated to be more than 2-11 km. The moment exerted by the ridges of southern Latona Corona is insufficient to bend the lithosphere into the observed outer rise shape; a negatively buoyant subducted or underthrust slab is needed. Depending on the unknown trench migration rate, lithospheric subduction can make a significant contribution to mantle cooling on Venus. Venusian chasmata could have a dual character. They may be propagating rifts near major volcanic rises, and subduction trenches far from the rises in the lowlands. Subduction and rifting may occur in close proximity on Venus, unlike on Earth. Rifting induced by hotspots on Venus may be necessary to break the lithosphere and allow subduction to occur. Such a process could result in gradual lithospheric subduction or global, episodic overturn of the lithosphere. (C) 1995 Academic Press, Inc.

Levitt, DA, Sandwell DT.  1995.  Lithospheric Bending at Subduction Zones Based on Depth Soundings and Satellite Gravity. Journal of Geophysical Research-Solid Earth. 100:379-400.   10.1029/94jb02468   AbstractWebsite

A global study of trench flexure was performed by simultaneously modeling 117 bathymetric profiles (original depth soundings) and satellite-derived gravity profiles. A thin, elastic plate flexure model was fit to each bathymetry/gravity profile by minimization of the L(1) norm. The six model parameters were regional depth, regional gravity, trench axis location, flexural wavelength, flexural amplitude, and lithospheric density. A regional tilt parameter was not required after correcting for age-related trend using a new high-resolution age map. Estimates of the density parameter confirm that most outer rises are uncompensated. We find that flexural wavelength is not an accurate estimate of plate thickness because of the high curvatures observed at a majority of trenches. As in previous studies, we find that the gravity data favor a longer-wavelength flexure than the bathymetry data. A joint topography-gravity modeling scheme and fit criteria are used to limit acceptable parameter values to models for which topography and gravity yield consistent results. Even after the elastic thicknesses are converted to mechanical thicknesses using the yield strength envelope model, residual scatter obscures the systematic increase of mechanical thickness with age; perhaps this reflects the combination of uncertainties inherent in estimating flexural wavelength, such as extreme inelastic bending and accumulated thermoelastic stress. The bending moment needed to support the trench and outer rise topography increases by a factor of 10 as lithospheric age increases from 20 to 150 Ma; this reflects the increase in saturation bending moment that the lithosphere can maintain. Using a stiff, dry-olivine theology, we find that the lithosphere of the GDH1 thermal model (Stein and Stein, 1992) is too hot and thin to maintain the observed bending moments. Moreover, the regional depth seaward of the oldest trenches (similar to 150 Ma) exceeds the GDH1 model depths by about 400 m.

Yale, MM, Sandwell DT, Smith WHF.  1995.  Comparison of Along-Track Resolution of Stacked Geosat, Ers-1, and Topex Satellite Altimeters. Journal of Geophysical Research-Solid Earth. 100:15117-15127.   10.1029/95jb01308   AbstractWebsite

Cross-spectral analysis of repeat satellite altimeter profiles was performed to compare the along-track resolution capabilities of Geosat, ERS 1 and TOPEX data. Geophysical Data Records were edited, differentiated, low-pass-filtered, and resampled at 5 Hz. All available data were then loaded into three-dimensional files where repeat cycles were aligned along-track (62 cycles of Geosat/Exact Repeat Mission; 16 cycles of ERS 1, 35-day orbit; 73 cycles of TOPEX). The coherence versus wave number between pairs of repeat profiles was used to estimate along-track resolution for individual cycles, eight-cycle-average profiles, and 31-cycle-average profiles (Geosat and TOPEX only). Coherence, which depends on signal to noise ratio, reflects factors such as seafloor gravity amplitude, regional seafloor depth, instrument noise, oceanographic noise, and the number of cycles available for stacking (averaging). Detailed resolution analyses are presented for two areas: the equatorial Atlantic, a region with high tectonic signal and low oceanographic noise; and the South Pacific, a region with low tectonic signal and high oceanographic variability. For all three altimeters, along-track resolution is better in the equatorial Atlantic than in the South Pacific. Global maps of along-track resolution show considerable geographic variation. On average globally, the along-track resolution (0.5 coherence) of eight-cycle stacks are approximately the same, 28, 29, and 30 km for TOPEX, Geosat, and ERS 1, respectively. TOPEX 31-cycle stacks (22 km) resolve slightly shorter wavelengths than Geosat 31-cycle stacks (24 km). The stacked data, which are publicly available, will be used in future global gravity grids, and for detailed studies of mid-ocean ridge axes, fracture zones, sea mounts, and seafloor roughness.

Sandwell, DT, Winterer EL, Mammerickx J, Duncan RA, Lynch MA, Levitt DA, Johnson CL.  1995.  Evidence for Diffuse Extension of the Pacific Plate from Pukapuka Ridges and Cross-Grain Gravity Lineations. Journal of Geophysical Research-Solid Earth. 100:15087-15099.   10.1029/95jb00156   AbstractWebsite

Satellite altimeter measurements of marine gravity reveal 100 to 200-km wavelength lineations over a wide area of the Pacific plate oriented roughly in the direction of absolute plate motion. At least three mechanisms have been proposed for their origin: small-scale convective rolls aligned in the direction of absolute plate motion by shear in the asthenosphere; diffuse N-S extension of the lithosphere resulting in lineated zones of extension (boudins); and minihotspots that move slowly with respect to major hotspots and produce intermittent volcanism. Recently, several chains of linear volcanic ridges have been found to be associated with the gravity lineations. Following ridgelike gravity signatures apparent in high-resolution Geosat gravity measurements, we surveyed a series of volcanic ridges that extend northwest from the East Pacific Rise flank for 2600 km onto 40 Ma seafloor. Our survey data, as well as radiometric dates on samples we collected from the ridges, provide tight constraints on their origin: (1) Individual ridge segments and sets of ridges are highly elongate in the direction of present absolute plate motion. (2) The ridges formed along a band 50 to 70-km-wide in the trough of one of the more prominent gravity lineations. (3) Radiometric dates of the largest ridges show no hotspot age progression. Moreover, the directions predicted for minihotspot traces older than 24 Ma do not match observed directions of either the gravity lineations or the ridges. Based on this last observation, we reject the minihotspot model. The occurrence of the ridges in the trough of the gravity lineation is incompatible with the small-scale convection model which would predict increased volcanism above the convective upwelling. We favor the diffuse extension model because it is consistent with the occurrence of ridges in the trough above the more highly extended lithosphere. However, the multibeam data show no evidence for widespread normal faulting of the crust as predicted by the model. Perhaps the fault scarps are buried under more than 30 m of sediments and/or covered by the elongated ridges. Finally, we note that if ridge-push force is much smaller than trench-pull force, then near the ridge axis the direction of maximum tensile stress must be perpendicular to the direction of absolute plate motion.

1994
Smith, WHF, Sandwell DT.  1994.  Bathymetric Prediction from Dense Satellite Altimetry and Sparse Shipboard Bathymetry. Journal of Geophysical Research-Solid Earth. 99:21803-21824.   10.1029/94jb00988   AbstractWebsite

The southern oceans (south of 30 degrees S) are densely covered with satellite-derived gravity data (track spacing 2-4 km) and sparsely covered with shipboard depth soundings (hundreds of kilometers between tracks in some areas). Flexural isostatic compensation theory suggests that bathymetry and downward continued gravity data may show linear correlation in a band of wavelengths 15-160 km, if sediment cover is thin and seafloor relief is moderate. At shorter wavelengths, the gravity field is insensitive to seafloor topography because of upward continuation from the seafloor to the sea surface; at longer wavelengths, isostatic compensation cancels out most of the gravity field due to the seafloor topography. We combine this theory with Wiener optimization theory and empirical evidence for gravity noise-to-signal ratios to design low-pass and band-pass filters to use in predicting bathymetry from gravity. The prediction combines long wavelengths (> 160 km) from low-pass-filtered soundings with an intermediate-wavelength solution obtained from multiplying downward continued, band-pass filtered (15-160 km) gravity data by a scaling factor S. S is empirically determined from the correlation between gravity data and existing soundings in the 15-160 km band by robust regression and varies at long wavelengths. We find that areas with less than 200 m of sediment cover show correlation between gravity and bathymetry significant at the 99% level, and S may be related to the density of seafloor materials in these areas. The prediction has a horizontal resolution limit of 5-10 km in position and is within 100 m of actual soundings at 50% of grid points and within 240 m at 80% of these. In areas of very rugged topography the prediction underestimates the peak amplitudes of seafloor features. Images of the prediction reveal many tectonic features not seen on any existing bathymetric charts. Because the prediction relies on the gravity field at wavelengths < 160 km, it is insensitive to errors in the navigation of sounding lines but also cannot completely reproduce them. Therefore it may be used to locate tectonic features but should not be used to assess hazards to navigation. The prediction is available from the National Geophysical Data Center in both digital and printed form.

Schubert, G, Moore WB, Sandwell DT.  1994.  Gravity over Coronae and Chasmata on Venus. Icarus. 112:130-146.   10.1006/icar.1994.1174   AbstractWebsite

The global spherical harmonic model of Venus' gravity field MGNP60FSAAP, with horizontal resolution of about 600 km, shows that most coronae have little or no signature in the gravity field. Nevertheless, some coronae and some segments of chasmata are associated with distinct positive gravity anomalies. No corona has been found to have a negative gravity anomaly. The spatial coincidence of the gravity highs over four closely spaced 300- to 400-km-diameter coronae in Eastern Eistla Regio with the structures themselves is remarkable and argues for a near-surface or lithospheric origin of the gravity signals over such relatively small features. Apparent depths of compensation (ADCs) of the prominent gravity anomalies at Artemis, Latona, and Heng-o Coronae are about 150 to 200 km. The geoid/topography ratios (GTRs) at Artemis, Latona, and Heng-o Coronae lie in the range 32 to 35 m km(-1). The large ADCs and GTRs of Artemis, Latona, and Heng-o Coronae are consistent with topographically related gravity and a thick Venus lithosphere or shallowly compensated topography and deep positive mass anomalies due to subduction or underthrusting at these coronae. At arcuate segments of Hecate and Parga Chasmata ADCs are about 125 to 150 km, while those at Fatua Corona, four coronae in Eastern Eistla Regio, and an arcuate segment of Western Parga Chasma are about 75 km. The GTRs at Fatua Corona, the four coronae in eastern Eistla Regio, and the arcuate segments of Hecate, Parga, and Western Parga Chasmata are about 12 to 21 m km(-1). The ADCs and GTRs of these coronae and arcuate chasmata segments are generally too large to reflect compensation by crustal thickness variations. Instead, they suggest compensation by thermally induced thickness variations in a moderately thick (approximate to 100 km) lithosphere. Alternatively, the gravity signals at these sites could originate from deep positive mass anomalies due to subduction or underthrusting. Weighted linear least squares fits to GTR vs h (long-wavelength topography) data from Heng-o and Fatua Coronae, the four coronae in eastern Eistla Regio, and the arcuate segments of Hecate, Parga, and western Parga Chasmata are consistent with compensation by thermally induced thickness variations of a dense lithosphere above a less dense mantle; the fits imply an average lithosphere thickness of about 180 km and an excess lithospheric density of about 0.5 to 0.7%. Gravity anomalies at the arcuate segments of Dali and Diana Chasmata that form Latona Corona, at Artemis Chasma, and other arcuate segments of Parga and Hecate Chasmata occur on the concave sides of the arcs. By analogy with gravity anomalies of similar horizontal scale (600 km-several thousand kilometers) on the concave sides of terrestrial subduction zone arcs, which are due in large part to subducted lithosphere, it is inferred that the gravity anomalies on Venus are consistent with retrograde subduction at Artemis Chasma, along the northern and southern margins of Latona Corona, and elsewhere along Parga and Hecate Chasmata. (C) 1994 Academic Press, Inc.

Johnson, CL, Sandwell DT.  1994.  Lithospheric Flexure on Venus. Geophysical Journal International. 119:627-647.   10.1111/j.1365-246X.1994.tb00146.x   AbstractWebsite

Topographic flexural signatures on Venus are generally associated with the outer edges of coronae, with some chasmata and with rift zones. Using Magellan altimetry profiles and grids of venusian topography, we identified 17 potential flexure sites. Both 2-D cartesian, and 2-D axisymmetric, thin-elastic plate models were used to establish the flexural parameter and applied load/bending moment. These parameters can be used to infer the thickness, strength and possibly the dynamics of the venusian lithosphere. Numerical simulations show that the 2-D model provides an accurate representation of the flexural parameter as long as the radius of the feature is several times the flexural parameter. However, an axisymmetric model must be used to obtain a reliable estimate of load/bending moment. 12 of the 17 areas were modelled with a 2-D thin elastic plate model, yielding best-fit effective elastic thicknesses in the range 12 to 34 km. We find no convincing evidence for flexure around smaller coronae, though five possible candidates have been identified. These five features show circumferential topographic signatures which, if interpreted as flexure, yield mean elastic thicknesses ranging from 6 to 22 km. We adopt a yield strength envelope for the venusian lithosphere based on a dry olivine rheology and on the additional assumption that strain rates on Venus are similar to, or lower than, strain rates on Earth. Many of the flexural signatures correspond to relatively high plate-bending curvatures so the upper and lower parts of the lithosphere should theoretically exhibit brittle fracture and flow, respectively. For areas where the curvatures are not too extreme, the estimated elastic thickness is used to estimate the larger mechanical thickness of the lithosphere. The large amplitude flexures in Aphrodite Terra predict complete failure of the plate, rendering mechanical thickness estimates from these features unreliable. One smaller corona also yielded an unreliable mechanical thickness estimate based on the marginal quality of the profile data. Reliable mechanical thicknesses found by forward modelling in this study are 21 km-37 km, significantly greater than the 13 km-20 km predictions based on heat-flow scaling arguments and chondritic thermal models. If the modelled topography is the result of lithospheric flexure, then our results for mechanical thickness, combined with the lack of evidence for flexure around smaller features, are consistent with a venusian lithosphere somewhat thicker than predicted. Dynamical models for bending of a viscous lithosphere at low strain rates predict a thick lithosphere, also consistent with low temperature gradients. Recent laboratory measurements indicate that dry crustal materials are much stronger than previously believed. Corresponding time-scales for gravitational relaxation are 10(8)-10(9) yr, making gravitational relaxation an unlikely mechanism for the generation of the few inferred flexural features. If dry olivine is also found to be stronger than previously believed, the mechanical thickness estimates for Venus will be reduced, and will be more consistent with the predictions of global heat scaling models.

Phipps Morgan, J, Sandwell DT.  1994.  Systematics of Ridge Propagation South of 30-Degrees-S. Earth and Planetary Science Letters. 121:245-258.   10.1016/0012-821X(94)90043-4   AbstractWebsite

New high-resolution Geosat altimetry data south of 30 degrees S reveal numerous propagating ridge wakes along intermediate- and slow-spreading ridges. These new examples provide a large enough database to establish systematics of ridge propagation. Almost all active propagating ridges propagate down a regional along-axis gravity or bathymetry gradient. The sense of the propagating ridge offset (right lateral vs, left lateral) is related to recent changes in spreading direction. We find there is a significant difference between the propagation of ridges with an axial high morphology which propagate at greater than similar to 50% of their full-spreading rate and ridges with a median valley morphology which usually propagate at similar to 25% of their spreading rate. The axial high propagators leave behind an asymmetric wake; the outer pseudofault appears as a continuous linear trough/step while the sheared zone appears as a chain of small gravity bumps. While we clearly see the propagating ridge wakes from offsets greater than similar to 10 km at slow- and intermediate-spreading ridges, at ridges spreading faster than similar to 75 mm/yr the amplitude of the wake topography decreases to the point where we no longer see these wakes in Geosat altimetry data. The systematics seen in this new data set support a fracture mechanics model for the dynamics of ridge propagation.

Small, C, Sandwell DT.  1994.  Imaging Midocean Ridge Transitions with Satellite Gravity. Geology. 22:123-126.   10.1130/0091-7613(1994)022<0123:imortw>2.3.co;2   AbstractWebsite

Gravity maps derived from satellite altimeter measurements provide unprecedented medium-resolution coverage of sparsely surveyed mid-ocean ridges in the southern oceans. A spectral analysis of 76 000 km of coincident shipboard and satellite gravity measurements shows that satellite altimeters can accurately resolve features with half-wavelengths as short as 13 km. The coverage and resolution of these gravity data allow us to determine accurately both the location of poorly charted ridge axes and the variation in axial anomaly character along the ridge axis, although their detailed morphology is not resolved. The results of this study support earlier studies that showed a transition from spreading-rate-dependent axial gravity lows to rate-independent axial highs with increasing spreading rate. Four such transitions are imaged on the Southeast Indian Ridge and Pacific Antarctic Ridge. We expect that these transitions are the result of a temperature-sensitive threshold phenomenon and may be influenced by nearby hot spots.

1993
Neumann, GA, Forsyth DW, Sandwell D.  1993.  Comparison of Marine Gravity from Shipboard and High-Density Satellite Altimetry Along the Mid-Atlantic Ridge, 30.5-Degrees-35.5-Degrees-S. Geophysical Research Letters. 20:1639-1642.   10.1029/93gl01487   AbstractWebsite

We compare new marine gravity fields derived from satellite altimetry with shipboard measurements over a region of more than 120,000 square kilometers in the central South Atlantic. Newly declassified satellite data were employed to construct free-air anomaly maps on 0.05 degree grids [Sandwell and Smith, 1992; Marks et al., 1993]. An extensive gravity and bathymetry dataset from four cruises along the Mid-Atlantic Ridge from 30.5-35.5-degrees-S provides a benchmark for testing the two-dimensional resolution and accuracy of the satellite measurements where their crosstrack spacing is near their widest. The satellite gravity signal is coherent with bathymetry in this region down to wavelengths of 26 km (gamma2=0.5), compared to 12.5 km for shipboard gravity. Residuals between the shipboard and satellite datasets have a roughly normal distribution. The standard deviation of satellite gravity with respect to shipboard measurements is nearly 7 mGal in a region of 140 mGal total variation, whereas the internal standard deviation at crossovers for GPS-navigated shipboard data is 1.8 mGal. The differences between shipboard and satellite data are too large to use satellite gravity to determine crustal thickness variations within a typical ridge segment.

Atwater, T, Sclater J, Sandwell D, Severinghaus J, Marlow M.  1993.  Fracture zone traces across the North Pacific Cretaceous Quiet Zone and their tectonic implications. The Mesozoic Pacific : geology, tectonics, and volcanism : a volume in memory of Sy Schlanger. ( Pringle MS, Sager WW, Sliter WV, Stein S, Eds.).:137-154., Washington, DC: American Geophysical Union Abstract
n/a
1992
Sandwell, DT, Schubert G.  1992.  Flexural Ridges, Trenches, and Outer Rises around Coronae on Venus. Journal of Geophysical Research-Planets. 97:16069-16083.   10.1029/92JE01274   AbstractWebsite

High-resolution altimetry collected by the Magellan spacecraft reveals trench and outer rise topographic signatures around major coronae (e.g. Eithinoha, Heng-0, Artemis, and Latona). In addition, Magellan synthetic aperature radar images show circumferential fractures in areas where the plates are curved downward. Both observations suggest that the lithosphere around coronae is flexed downward by the weight of the overriding coronal rim or by the negative buoyancy of subducted lithosphere. We have modelled the trench and outer rise topography as a thin elastic plate subjected to a line load and bending moment beneath die corona rim. The approach was tested at northern Freyja Montes where the best fit elastic thickness is 18 km, in agreement with previously published results. The elastic thicknesses determined by modelling numerous profiles at Eithinoha, Heng-0, Artemis, and Latona are 15, 40, 37, and 35 km, respectively. At Eithinoha, Artemis, and Latona where the plates appear to be yielding, the maximum bending moments and elastic thicknesses are similar to those found at the Middle America, Mariana, and Aleutian trenches on Earth, respectively. Estimates of effective elastic thickness and plate curvature are used with a yield strength envelope model of the lithosphere to estimate lithospheric temperature gradients. At Heng-0, Artemis, and Latona, temperature gradients are less than 10 K/km, which correspond to conductive heat losses of less than one half the expected average planetary value. We propose two scenarios for the creation of the ridge, trench, and outer rise topography: differential thermal subsidence and lithospheric subduction. The topography of Heng-0 is well matched by the differential thermal subsidence model. However, at Artemis and Latona the amplitudes of the trench and outer rise signatures are a factor of 5 too large to be explained by thermal subsidence alone. In these cases we favor the lithospheric subduction model wherein the lithosphere outboard of the corona perimeter subducts (rolls back) and the corona diameter increase.

Sandwell, DT.  1992.  Antarctic Marine Gravity-Field from High-Density Satellite Altimetry. Geophysical Journal International. 109:437-448.   10.1111/j.1365-246X.1992.tb00106.x   AbstractWebsite

Closely spaced satellite altimeter profiles (< 5 km) collected during the Geosat Geodetic Mission (Geosat/GM), and those planned for the extended ERS-1 mission, are easily converted to grids of vertical gravity gradient and gravity anomaly. As profile spacing decreases, it becomes increasingly difficult to perform a crossover adjustment on the original geoid height profiles without introducing large cross-track gradients. If one is only interested in the horizontal and vertical derivatives of the gravitational potential, however, adjustment of the profile is unnecessary. The long-wavelength radial orbit error is suppressed well below the noise level of the altimeter by simply taking the along-track derivative of each profile. Ascending and descending slope profiles are then interpolated onto separate uniform grids. These two grids are summed and differenced to form comparable grids of east and north vertical deflection. Using Laplace's equation, the vertical gravity gradient is calculated directly from the vertical deflection grids. Fourier analysis is required to construct gravity anomalies from the two vertical deflection grids. These techniques are applied to high-density (approximately 2 km profile spacing) Geosat/GM profiles in Antarctic waters (60-degrees-S to 72-degrees-S). Gridding and interpolation are performed using the method of projection onto convex sets where the smoothness criteria corresponds to upward continuation through 4 km of ocean. The resultant gravity grids have resolution and accuracy comparable to shipboard gravity profiles. After adjustment of a DC shift in the shipboard gravity profiles (approximately 5 mGal) the rms difference between the ship and satellite gravity is 5.5 mGal. Many interesting and previously uncharted features are apparent in these new gravity maps including a propagating rift wake and a large 'leaky transform' along the Pacific-Antarctic Rise.

Small, C, Sandwell DT.  1992.  An Analysis of Ridge Axis Gravity Roughness and Spreading Rate. Journal of Geophysical Research-Solid Earth. 97:3235-3245.   10.1029/91jb02465   AbstractWebsite

Fast and slow spreading ridges have radically different morphologic and gravimetric characteristics. In this study, altimeter measurements from the Geosat Exact Repeat Mission (Geosat ERM) are used to investigate spreading rate dependence of the ridge axis gravity field. Gravity roughness provides an estimate of the amplitude of the gravity anomaly and is robust to small errors in the location of the ridge axis. We compute gravity roughness as a weighted root mean square (RMS) of the vertical deflection at 438 ridge crossings on the mid-ocean ridge system. Ridge axis gravity anomalies show a decrease in amplitude with increasing spreading rate up to an intermediate rate of approximately 60-80 mm/yr and almost no change at higher rates; overall the roughness decreases by a factor of 10 between the lowest and highest rates. In addition to the amplitude decrease, the range of roughness values observed at a given spreading rate shows a similar order of magnitude decrease with transition between 60 and 80 mm/yr. The transition of ridge axis gravity is most apparent at three relatively unexplored locations on the Southeast Indian Ridge and the Pacific-Antarctic Rise; on these intermediate rate ridges the transition occurs abruptly across transform faults.

Small, C, Sandwell DT.  1992.  A Comparison of Satellite and Shipboard Gravity Measurements in the Gulf-of-Mexico. Geophysics. 57:885-893.   10.1190/1.1443301   AbstractWebsite

Satellite altimeters have mapped the marine geoid over virtually all of the world's oceans. These geoid height measurements may be used to compute free air gravity anomalies in areas where shipboard measurements are scarce. Two-dimensional (2-D) transformations of geoid height to gravity are limited by currently available satellite track spacing and usually sacrifice short wavelength resolution. Full resolution may be retained along widely spaced satellite tracks if a one dimensional (1-D) transformation is used. Although the 1-D transform retains full resolution, it assumes that the gravity field is lineated perpendicular to the profile and is therefore limited by the orientation of the profile relative to the field. We investigate the resolution and accuracy of the 1-D transform method in the Northern Gulf of Mexico by comparing satellite gravity profiles with high quality shipboard data provided by Edcon Inc. The long wavelength components of the gravity field are constrained by a low degree reference field while the short wavelength components are computed from altimeter profiles. We find that rms misfit decreases with increasing spherical harmonic degree of the reference field up to 180 degrees (lambda > 220 km) with negligible improvement for higher degrees. The average rms misfit for the 17 profiles used in this study was 6.5 mGal with a 180 degree reference field. Spectral coherence estimates indicate that the satellite data resolve features with wavelengths as short as 25 km.

Sandwell, DT, Ruiz MB.  1992.  Along-Track Gravity-Anomalies from Geostat and Seasat Altimetry - Gebco Overlays. Marine Geophysical Researches. 14:165-205.   10.1007/bf01270629   AbstractWebsite

To provide easy access to the large number of Seastat and Geosat altimeter observations collected over the last decade, we have plotted these satellite altimeter profiles as overlays to the General Bathymetric Chart of the Oceans (GEBCO). Each of the 32 overlays displays along-track gravity anomalies for either ascending (southeast to northwest) or descending (northeast to southwest) altimeter passes. Where Seasat and Geosat profiles coincide, only the more accurate Geosat profiles were plotted. In poorly charted southern ocean areas, satellite altimeter profiles reveal many previously undetected features of the seafloor.

Sandwell, DT, Schubert G.  1992.  Evidence for Retrograde Lithospheric Subduction on Venus. Science. 257:766-770.   10.1126/science.257.5071.766   AbstractWebsite

Annular moats and outer rises around large Venus coronae such as Artemis, Latona, and Eithinoha are similar in arcuate planform and topography to the trenches and outer rises of terrestrial subduction zones. On Earth, trenches and outer rises are modeled as the flexural response of a thin elastic lithosphere to the bending moment of the subducted slab; this lithospheric flexure model also accounts for the trenches and outer rises outboard of the major coronae on Venus. Accordingly, it is proposed that retrograde lithospheric subduction may be occurring on the margins of the large Venus coronae while compensating back-arc extension is occurring in the expanding coronae interiors. Similar processes may be taking place at other deep arcuate trenches or chasmata on Venus such as those in the Dali-Diana chasmata area of eastern Aphrodite Terra.

McKenzie, D, Ford PG, Johnson C, Parsons B, Sandwell D, Saunders S, Solomon SC.  1992.  Features on Venus Generated by Plate Boundary Processes. Journal of Geophysical Research-Planets. 97:13533-13544.   10.1029/92JE01350   AbstractWebsite

Various observations suggest that there are processes on Venus that produce features similar to those associated with plate boundaries on Earth. Synthetic aperture radar images of Venus, taken with a radar whose wavelength is 12.6 cm, are compared with GLORIA images of active plate boundaries, obtained with a sound source whose wavelength is 23 cm. Features similar to transform faults and to abyssal hills on slow and fast spreading ridges can be recognized within the Artemis region of Venus but are not clearly visible elsewhere. The composition of the basalts measured by the Venera 13 and 14 and the Vega 2 spacecraft corresponds to that expected from adiabatic decompression, like that which occurs beneath spreading ridges on Earth. Structures that resemble trenches are widespread on Venus and show the same curvature and asymmetry as they do on Earth. These observations suggest that the same simple geophysical models that have been so successfully used to understand the tectonics of Earth can also be applied to Venus.

Johnson, CL, Sandwell DT.  1992.  Joints in Venusian Lava Flows. Journal of Geophysical Research-Planets. 97:13601-13610. AbstractWebsite

Venusian plains regions, as imaged by the Magellan spacecraft, display many styles of tectonic and volcanic deformation. Radar images of several areas of the volcanic plains reveal polygonal patterns of bright lineations, Intersection geometries of the lineations defining the polygonal patterns are typical of those found in tensile networks. In addition, the polygonal patterns generally exhibit no preferred orientation, implying that they are the result of horizontally isotropic stress fields. Such stress fields usually arise on the Earth as a consequence of desiccation, freeze-thaw cycles, or cooling and produce mud cracks, ice-wedge polygons, and columnar joints, respectively. We propose that the polygonal patterns seen in the Magellan images of some of the volcanic plains are the result of thermal stresses. We consider two alternative scenarios which would generate sufficient tensile thermal stresses Lo cause failure. The first scenario is that of a cooling lava flow; the residual thermal stress which would develop (assuming no failure of the rock) is tensional and of the order of 400 MPa. This is much greater than the strength of unfractured terrestrial basalt (approximately 10 MPa), so we can expect joints to form during cooling of Venusian lava flows. However, the spacing of the polygonal lineations seen in Magellan images is typically 1-2 km, much larger than the largest spacings of decimeters for joints in terrestrial lavas. The second scenario involves an increased heat flux to the base of the lithosphere; the resulting thermal stresses cause the upper lithosphere to be in tension and the lower lithosphere to be in compression. Brittle tensile failure occurs near the surface due to the finite yield strength of the lithosphere. The maximum depth to which failure occurs increases with increasing elevation of the temperature gradient. For an initially 25-km-thick lithosphere and temperature gradient of ll-degrees/km, this maximum depth varies from 0.5 km to 2 km as the temperature gradient is increased to 12-degrees/km and 22-degrees/km, respectively. Both the cooling flow scenario and the heated lithosphere scenario produce isotropic tensile surface stress patterns, but the heated lithosphere model is more compatible with the kilometer scale of the polygonal patterns seen in Magellan images.

Sandwell, DT, Lawver LA, Dalziel IWD, Smith WHF, Wiederspahn M.  1992.  ANTARCTICA Gravity Anomaly and Infrared Satellite Image, USGS MAP 1-2284. : U.S. Geol. Survey Abstract
n/a
1991
Marks, KM, Sandwell DT.  1991.  Analysis of Geoid Height Versus Topography for Oceanic Plateaus and Swells Using Nonbiased Linear-Regression. Journal of Geophysical Research-Solid Earth and Planets. 96:8045-8055.   10.1029/91jb00240   AbstractWebsite

We have investigated the relationship between geoid height and topography for 53 oceanic plateaus and swells to determine the mode of compensation. The ratio of geoid height to topography was obtained from the slope of a best line fit by functional analysis (i.e. nonbiased linear regression), a method that minimizes both geoid height and topography residuals. This method is more appropriate than traditional least squares analysis that minimizes only geoid height residuals, because uncertainties are present in both data types. We find that approximately half of the oceanic and continental plateaus analyzed have low ratios that are consistent with Airy-compensated crustal thickening. The remaining plateaus, however, have higher geoid/topography ratios than predicted by the simple Airy model, and the seismically determined Moho depths beneath some of these features are too shallow for crustal thickening alone. A two-layer Airy compensation model, composed of thickened crust underlain by an anomalously low density "mantle root", is used to explain these observations. The Walvis Ridge, and the Agulhas, Crozet, and north Kerguelen plateaus have geoid/topography ratios and Moho depths that are consistent with the two-layer Airy model. The proximity of the Agulhas Plateau to a RRR triple junction during its early development, and the excessive volcanism at active spreading ridges that created the Crozet and north Kerguelen plateaus and the Walvis Ridge, may have produced regions of enhanced depletion and hence the low-density mantle anomalies. If this explanation is correct, then the low-density mantle anomaly persists over time and remains embedded in the lithosphere beneath the oceanic feature.