Publications

Export 20 results:
Sort by: Author [ Title  (Asc)] Type Year
A B C D E F G H I J K L M N O P Q R [S] T U V W X Y Z   [Show ALL]
S
Sandwell, D, Smith B.  2007.  The San Andreas Fault: Adjustments in the Earth's Crust. Our changing planet : the view from space. ( King MD, Parkinson CL, Partington KC, Williams RG, Eds.).:94-96., Cambridge ; New York: Cambridge University Press Abstract

Examines what orbital imagery tells us about the atmosphere, land, ocean, and polar ice caps of our planet and the ways that it changes naturally, and in response to human activity.

Watson, KM, Bock Y, Sandwell DT.  2002.  Satellite interferometric observations of displacements associated with seasonal groundwater in the Los Angeles basin. Journal of Geophysical Research-Solid Earth. 107   10.1029/2001jb000470   AbstractWebsite

[1] The Newport-Inglewood fault zone (NIFZ) displays interferometric synthetic aperture radar (SAR) phase features along most of its length having amplitudes of up to 60 mm. However, interpretation in terms of right-lateral, shallow slip along the fault fails to match the range of geologic estimates of slip. Recently, Bawden et al. [2001] proposed that these phase features, as well as a broader deformation pattern in the Los Angeles basin, are due to vertical motion related to annual variations in the elevation of the water table. We confirm this hypothesis through the analysis of a longer span of data consisting of 26 SAR images collected by the ERS-1 and ERS-2 spacecraft between June 1992 and June 2000. Moreover, we use continuous GPS measurements from 1995 to the present to establish the amplitude and phase of the vertical deformation. The Los Angeles basin becomes most inflated one quarter of the way through the year, which is consistent with water table measurements as well as with the end of the rainy season when the aquifer should be at a maximum. The spatial pattern of the amplitude of the annual signal derived from continuous GPS measurements is consistent with the shape of the interferometric fringes. GPS sites both near the NIFZ and in a 20 by 40 km zone within the basin also show significant N-S annual variations that may be related to the differential expansion across the fault. Since these horizontal signals have peak-to-trough amplitudes of 6 mm, they mask the smaller tectonic signals and need to be taken into account when interpreting GPS time series of site position. Moreover, since the groundwater signal appears to have a long-term vertical trend which varies in sign depending on location, it will be difficult to distinguish interseismic tectonic slip along the NIFZ and within the affected areas in the basin.

DeSanto, JB, Sandwell DT, Chadwell CD.  2016.  Seafloor geodesy from repeated sidescan sonar surveys. Journal of Geophysical Research-Solid Earth. 121:4800-4813.   10.1002/2016jb013025   AbstractWebsite

Accurate seafloor geodetic methods are critical to the study of marine natural hazards such as megathrust earthquakes, landslides, and volcanoes. We propose digital image correlation of repeated shipboard sidescan sonar surveys as a measurement of seafloor deformation. We test this method using multibeam surveys collected in two locales: 2500m deep lightly sedimented seafloor on the flank of a spreading ridge and 4300m deep heavily sedimented seafloor far from any plate boundary. Correlation of these surveys are able to recover synthetic displacements in the across-track (range) direction accurate to within 1m and in the along-track (azimuth) direction accurate to within 1-10m. We attribute these accuracies to the inherent resolution of sidescan data being better in the range dimension than the azimuth dimension. These measurements are primarily limited by the accuracy of the ship navigation. Dual-frequency GPS units are accurate to approximate to 10cm, but single-frequency GPS units drift on the order of 1m/h and are insufficient for geodetic application.

Sandwell, DT, Wessel P.  2010.  Seamount Discovery Tool Aids Navigation to Uncharted Seafloor Features. Oceanography. 23:34-36. AbstractWebsite
n/a
Sandwell, DT, Agreen RW.  1984.  Seasonal-Variation in Wind-Speed and Sea State from Global Satellite Measurements. Journal of Geophysical Research-Oceans. 89:2041-2051.   10.1029/JC089iC02p02041   AbstractWebsite

The GEOS 3 altimeter, which collected data intermittently for nearly 4 years, has measured significant wave heights and surface wind speeds over most of the world's oceans. Using these data, we have constructed contour maps of spatial variations in sea state and wind speed for winter and summer. To obtain reliable averages in the southern oceans, we low-pass filtered the data using a two-dimensional Gaussian filter with a half width of 600 km. The wind speed maps show that the zonal surface wind patterns, such as the westerlies, the horse latitudes, the trade winds, and the doldrums, shift south by about 10° between winter and summer. As expected, the highest wind speeds and sea states occur during the winter months in the mid-latitudes, 30°–60°. The most striking feature of the maps, however, is the large asymmetry in the summer to winter variation between the two hemispheres. The largest seasonal variations in sea state and wind speed occur in the northern hemisphere oceans and especially in the North Atlantic, where there is almost a factor of 2 variation. In contrast, the summer to winter variation in wind speed and sea state in the southern hemisphere oceans is relatively small. For example, the summer to winter increase in wind speed at 50°S is less than 10%, while at 50°N it is more than 50%. This differing variability can be attributed to the asymmetric distribution of continental area between the two hemispheres and the low effective heat capacity of the continents relative to the oceans.

Sandwell, DT, Agreen RW.  1985.  Seasonal-Variation in Wind-Speed and Sea State from Global Satellite Measurements - Reply. Journal of Geophysical Research-Oceans. 90:5009-5010.   10.1029/JC090iC03p05009   AbstractWebsite
n/a
Small, C, Sandwell D.  1996.  Sights unseen. Natural History. 105:28-33. AbstractWebsite
n/a
Marks, KM, Smith WHF, Sandwell DT.  2013.  Significant improvements in marine gravity from ongoing satellite missions. Marine Geophysical Research. 34:137-146.   10.1007/s11001-013-9190-8   AbstractWebsite

Incorporating new altimeter data from CryoSat-2 (30 months), Envisat (18 months), and Jason-1 (7 months) satellites into an updated marine gravity field yields significant reduction in noise and improved resolution. Compared to an older gravity field that did not include the new altimeter data, incoherent power is reduced globally by approximately 2.9 dB at 15 km, 1.6 dB at 20 km, and 1.0 dB at 25 km wavelengths. Coherence analyses between the updated gravity and recent multibeam surveys distributed throughout the world's oceans shows an average increase of similar to 0.023 in mean coherence in the 20-160 km waveband, with the biggest increase (> 0.08) over fast spreading ridges and smallest (< 0.02) over slow spreading ridges and continental shelves. The shortest wavelength at which coherence is above 0.5 decreased globally by similar to 2 km wavelength, with the biggest decrease (> 3.5 km) over fast spreading ridges and smallest (< 1.5 km) over slow spreading ridges and continental shelves. In the Clipperton fracture zone area these improvements result in seamounts that are more accurately located, the detection of smaller seamounts, and the expression of north-south trending abyssal hill fabric. As more altimeter data from the ongoing satellite missions are incorporated into future gravity field updates, finer-scale details of the seafloor will continue to emerge.

Wei, M, Sandwell D, Fialko Y.  2009.  A silent M-w 4.7 slip event of October 2006 on the Superstition Hills fault, southern California. Journal of Geophysical Research-Solid Earth. 114   10.1029/2008jb006135   AbstractWebsite

During October 2006, the 20-km-long Superstition Hills fault (SHF) in the Salton Trough, southern California, slipped aseismically, producing a maximum offset of 27 mm, as recorded by a creepmeter. We investigate this creep event as well as the spatial and temporal variations in slip history since 1992 using ERS-1/2 and Envisat satellite data. During a 15-year period, steady creep is punctuated by at least three events. The first two events were dynamically triggered by the 1992 Landers and 1999 Hector Mine earthquakes. In contrast, there is no obvious triggering mechanism for the October 2006 event. Field measurements of fault offset after the 1999 and 2006 events are in good agreement with the interferometric synthetic aperture radar data indicating that creep occurred along the 20-km-long fault above 4 km depth, with most of the slip occurring at the surface. The moment released during this event is equivalent to a M-w 4.7 earthquake. This event produced no detectable aftershocks and was not recorded by the continuous GPS stations that were 9 km away. Modeling of the long-term creep from 1992 to 2007 creep using stacked ERS-1/2 interferograms also shows a maximum creep depth of 2-4 km, with slip tapering with depth. Considering that the sediment thickness varies between 3 km and 5 km along the SHF, our results are consistent with previous studies suggesting that shallow creep is controlled by sediment depth, perhaps due to high pore pressures in the unconsolidated sediments.

Wei, M, Sandwell D, Fialko Y, Bilham R.  2011.  Slip on faults in the Imperial Valley triggered by the 4 April 2010 Mw 7.2 El Mayor-Cucapah earthquake revealed by InSAR. Geophysical Research Letters. 38   10.1029/2010gl045235   AbstractWebsite

Radar interferometry (InSAR), field measurements and creepmeters reveal surface slip on multiple faults in the Imperial Valley triggered by the main shock of the 4 April 2010 El Mayor-Cucapah M(w) 7.2 earthquake. Co-seismic offsets occurred on the San Andreas, Superstition Hills, Imperial, Elmore Ranch, Wienert, Coyote Creek, Elsinore, Yuha, and several minor faults near the town of Ocotillo at the northern end of the mainshock rupture. We documented right-lateral slip (<40 mm) on northwest-striking faults and left-lateral slip (<40 mm) on southwest-striking faults. Slip occurred on 15-km- and 20-km-long segments of the San Andreas Fault in the Mecca Hills (<= 50 mm) and Durmid Hill (<= 10 mm) respectively, and on 25 km of the Superstition Hills Fault (<= 37 mm). Field measurements of slip on the Superstition Hills Fault agree with InSAR and creepmeter measurements to within a few millimeters. Dislocation models of the InSAR data from the Superstition Hills Fault confirm that creep in this sequence, as in previous slip events, is confined to shallow depths (<3 km). Citation: Wei, M., D. Sandwell, Y. Fialko, and R. Bilham (2011), Slip on faults in the Imperial Valley triggered by the 4 April 2010 Mw 7.2 El Mayor-Cucapah earthquake revealed by InSAR, Geophys. Res. Lett., 38, L01308, doi:10.1029/2010GL045235.

Sandwell, DT, Smith WHF.  2014.  Slope correction for ocean radar altimetry. Journal of Geodesy. 88:765-771.   10.1007/s00190-014-0720-1   AbstractWebsite

We develop a slope correction model to improve the accuracy of mean sea surface topography models as well as marine gravity models. The correction is greatest above ocean trenches and large seamounts where the slope of the geoid exceeds 100 rad. In extreme cases, the correction to the mean sea surface height is 40 mm and the correction to the along-track altimeter slope is 1-2 rad which maps into a 1-2 mGal gravity error. Both corrections are easily applied using existing grids of sea surface slope from satellite altimetry.

Price, EJ, Sandwell DT.  1998.  Small-scale deformations associated with the 1992 Landers, California, earthquake mapped by synthetic aperture radar interferometry phase gradients. Journal of Geophysical Research-Solid Earth. 103:27001-27016.   10.1029/98jb01821   AbstractWebsite

The Landers earthquake (M-w 7.3) occurred on June 28, 1992, and ruptured nearly 100 km of previously mapped and unmapped faults in the Mojave Desert. We use synthetic aperture radar interferometry (InSAR) to examine the cumulative surface deformation between April 24 and August 7, 1992, in a 100 x 100 km region surrounding the northern portion of the earthquake rupture. Also, we introduce a technique for manipulating SAR interferograms to extract short-wavelength displacement information. This technique involves computation and subsequent combination of interferometric phase gradient maps. The InSAR results show significant deformation signatures associated with faults, fractures, dry lake beds, and mountainous regions within 75-100 km of the main rupture. Using the phase gradient method, we are able to extract small-scale deformation patterns near the main rupture. Many of the preexisting, mapped faults within 50 km of the main rupture experienced triggered slip; these include the Old Woman, Lenwood, Johnson Valley, West Calico, and Calico Faults. The InSAR results also indicate right-lateral offsets along secondary fractures trending N-NE within the left-lateral zone of shear between the main rupture and the Johnson Valley Fault. Additionally, there are interesting interferogram fringe signatures surrounding Troy Dry Lake and Coyote Dry Lake that are related to deformation of dry lake beds.

Xu, XH, Sandwell DT, Bassett D.  2018.  A spectral expansion approach for geodetic slip inversion: implications for the downdip rupture limits of oceanic and continental megathrust earthquakes. Geophysical Journal International. 212:400-411.   10.1093/gji/ggx408   AbstractWebsite

We have developed a data-driven spectral expansion inversion method to place bounds on the downdip rupture depth of large megathrust earthquakes having good InSAR and GPS coverage. This inverse theory approach is used to establish the set of models that are consistent with the observations. In addition, the inverse theory method demonstrates that the spatial resolution of the slip models depends on two factors, the spatial coverage and accuracy of the surface deformation measurements, and the slip depth. Application of this method to the 2010 M-w 8.8 Maule Earthquake shows a slip maximum at 19 km depth tapering to zero at similar to 40 km depth. In contrast, the continent-continent megathrust earthquakes of the Himalayas, for example 2015 M-w 7.8 Gorkha Earthquake, shows a slip maximum at 9 km depth tapering to zero at similar to 18 km depth. The main question is why is the maximum slip depth of the continental megathrust earthquake only 50 per cent of that observed in oceanic megathrust earthquakes. To understand this difference, we have developed a simple 1-D heat conduction model that includes the effects of uplift and surface erosion. The relatively low erosion rates above the ocean megathrust results in a geotherm where the 450-600 degrees C transition is centred at similar to 40 km depth. In contrast, the relatively high average erosion rates in the Himalayas of similar to 1 mm yr-1 results in a geotherm where the 450-600 degrees C transition is centred at similar to 20 km. Based on these new observations and models, we suggest that the effect of erosion rate on temperature explains the difference in the maximum depth of the seismogenic zone between Chile and the Himalayas.

Sandwell, DT.  1981.  Spreading Ridges, Fractures Zones, and Thermal Swells. Ph. D.:214., Los Angeles: University of California, Los Angeles Abstract
n/a
Yale, MM, Sandwell DT.  1999.  Stacked global satellite gravity profiles. Geophysics. 64:1748-1755.   10.1190/1.1444680   AbstractWebsite

Gravity field recovery from satellite altimetry provides global marine coverage but lacks the accuracy and resolution needed for many exploration geophysics studies. The repeating ground tracks of the ERS-1/2, Geosat, and Topex/Poseidon altimeters offer the possibility of improving the accuracy and resolution of gravity anomalies along widely spaced (similar to 40-km spacing) tracks. However, complete ocean coverage is usually needed to convert the sea-surface height (br along-track slope) measurements into gravity anomalies. Here we develop and test a method for constructing stacked gravity profiles by using a published global gravity grid (Sandwell and Smith, 1997), V7.2, as a reference model for the slope-to-gravity anomaly conversion. The method is applied to stacks (averages) of Geosat/ERM (up to 62 cycles), ERS-1/2 (up to 43 cycles), and Topex (up to 142 cycles) satellite altimeter profiles. We assess the accuracies of the ERS-1/2 profiles through a comparison with a gravity model of the northern Gulf of Mexico (profiles provided by EDCON Inc.). The 40 ERS profiles evaluated have a mean rms difference of 3.77 mGal and full wavelength resolution (0.5 coherence) of 24 km. Our processing retains wavelengths as short as 10 km so smaller, large-amplitude features can be resolved, especially in shallow ocean areas (<1000 m deep). We provide an example of combining these higher resolution profiles with lower resolution gravity data in the Caspian Sea.

Luttrell, K, Sandwell D.  2006.  Strength of the lithosphere of the Galilean satellites. Icarus. 183:159-167.   10.1016/j.icarus.2006.01.015   AbstractWebsite

Several approaches have been used to estimate the ice shell thickness on Callisto, Ganymede, and Europa. Here we develop a method for placing a strict lower bound on the thickness of the strong part of the shell (lithosphere) using measurements of topography. The minimal assumptions are that the strength of faults in the brittle lithosphere is controlled by lithostatic pressure according to Byerlee's law and the shell has relatively uniform density and thickness. Under these conditions, the topography of the ice provides a direct measure of the bending moment in the lithosphere. This topographic bending moment Must be less than the saturation bending moment of the yield strength envelope derived front Byerlee's law. The model predicts that the topographic amplitude spectrum decreases as the square of the topographic wavelength. This explains why Europa is rugged at shorter wavelengths ( similar to 10 km) but extremely smooth, and perhaps conforming to an equipotential Surface, at longer wavelengths ( > 100 km). Previously compiled data on impact crater depth and diameter [Schenk, P.M., 2002. Nature 417, 419-421] on Europa show good agreement with the spectral decrease predicted by the model and require a lithosphere thicker than 2.5 km. A more realistic model, including a ductile lower lithosphere. requires a thickness greater than 3.5 km. Future measurements of topography in the 10-100 km wavelength hand will provide tight constraints on lithospheric strength. (c) 2006 Elsevier Inc. All riahts reserved.

Smith-Konter, B, Sandwell D.  2009.  Stress evolution of the San Andreas fault system: Recurrence interval versus locking depth. Geophysical Research Letters. 36   10.1029/2009gl037235   AbstractWebsite

Major ruptures along the San Andreas Fault System (SAFS) are driven by stress that has accumulated in the upper locked portion of the crust. The present-day stress accumulation rate on any given fault segment is fairly well resolved by current geodetic measurements. Model stress accumulation rates vary between 0.5 and 7 MPa per century and are inversely proportional to earthquake recurrence intervals. In contrast, the total accumulated stress on a given fault segment is poorly resolved since it depends on the uncertain rupture history of each fault over the past few thousand years. We simulate accumulated stress at crustal depths for both past and present-day conditions by assuming complete release of accumulated slip deficit during major ruptures. These speculative results indicate that the southern San Andreas, which has not ruptured in a major earthquake in over 300 years, is currently approaching a threshold stress level. Citation: Smith-Konter, B., and D. Sandwell (2009), Stress evolution of the San Andreas fault system: Recurrence interval versus locking depth, Geophys. Res. Lett., 36, L13304, doi: 10.1029/2009GL037235.

Tong, X, Sandwell DT, Schmidt DA.  2018.  Surface creep rate and moment accumulation rate along the Aceh segment of the Sumatran Fault from L-band ALOS-1/PALSAR-1 observations. Geophysical Research Letters. 45:3404-3412.   10.1002/2017gl076723   AbstractWebsite

We analyzed the interferometric synthetic aperture radar data from the ALOS-1/PALSAR-1 satellite to image the interseismic deformation along the Sumatran fault. The interferometric synthetic aperture radar time series analysis reveals up to similar to 20 mm/year of aseismic creep on the Aceh segment along the Northern Sumatran fault. This is a large fraction of the total slip rate across this fault. The spatial extent of the aseismic creep extends for similar to 100 km. The along-strike variation of the aseismic creep has an inverse "U" shape. An analysis of the moment accumulation rate shows that the central part of the creeping section accumulates moment at approximately 50% of the rate of the surrounding locked segments. An initial analysis of temporal variations suggests that the creep rate may be decelerating with time, suggesting that the creep rate is adjusting to a stress perturbation from nearby seismic activity. Our study has implications to the earthquake hazard along the northern Sumatran fault.

Xu, XH, Ward LA, Jiang JL, Smith-Konter B, Tymofyeyeva E, Lindsey EO, Sylvester AG, Sandwell DT.  2018.  Surface creep rate of the southern San Andreas Fault modulated by stress perturbations from nearby large events. Geophysical Research Letters. 45:10259-10268.   10.1029/2018gl080137   AbstractWebsite

A major challenge for understanding the physics of shallow fault creep has been to observe and model the long-term effect of stress changes on creep rate. Here we investigate the surface creep along the southern San Andreas fault (SSAF) using data from interferometric synthetic aperture radar spanning over 25 years (ERS 1992-1999, ENVISAT 2003-2010, and Sentinel-1 2014-present). The main result of this analysis is that the average surface creep rate increased after the Landers event and then decreased by a factor of 2-7 over the past few decades. We consider quasi-static and dynamic Coulomb stress changes on the SSAF due to these three major events. From our analysis, the elevated creep rates after the Landers can only be explained by static stress changes, indicating that even in the presence of dynamically triggered creep, static stress changes may have a long-lasting effect on SSAF creep rates. Plain Language Summary There are two significant conclusions from this study. First, we analyzed 25 years of InSAR measurements over the Southern San Andreas Fault system to document a major increase in the average creep rate following the 1992 Mw 7.3 Landers Earthquake which is then followed by creep rate reductions after the 1999 Mw 7.1 Hector Mine Earthquake and the 2010 Mw 7.2 El Major Cucapah Earthquake. Second, we attribute all these creep rate changes to the Coulomb stress variations from these three major Earthquakes. The dynamic Coulomb stress changes are similar for all three events, contributing to triggered creep on the SSAF. In contrast, the static Coulomb stress changes on the SSAF are positive after the Landers and negative after the Hector Mine and El Major Cucapah, coinciding with the higher average creep rate after the Landers and lower rates after the other two events. An implication of this study is that small but steady Coulomb stress changes have a larger impact on shallow creep than the larger dynamic stress changes associated with passing seismic waves. These results illuminate the significance of time scale-dependent complexity of shallow fault creep and how these behaviors are communicated by stress perturbations from regional earthquakes.

Phipps Morgan, J, Sandwell DT.  1994.  Systematics of Ridge Propagation South of 30-Degrees-S. Earth and Planetary Science Letters. 121:245-258.   10.1016/0012-821X(94)90043-4   AbstractWebsite

New high-resolution Geosat altimetry data south of 30 degrees S reveal numerous propagating ridge wakes along intermediate- and slow-spreading ridges. These new examples provide a large enough database to establish systematics of ridge propagation. Almost all active propagating ridges propagate down a regional along-axis gravity or bathymetry gradient. The sense of the propagating ridge offset (right lateral vs, left lateral) is related to recent changes in spreading direction. We find there is a significant difference between the propagation of ridges with an axial high morphology which propagate at greater than similar to 50% of their full-spreading rate and ridges with a median valley morphology which usually propagate at similar to 25% of their spreading rate. The axial high propagators leave behind an asymmetric wake; the outer pseudofault appears as a continuous linear trough/step while the sheared zone appears as a chain of small gravity bumps. While we clearly see the propagating ridge wakes from offsets greater than similar to 10 km at slow- and intermediate-spreading ridges, at ridges spreading faster than similar to 75 mm/yr the amplitude of the wake topography decreases to the point where we no longer see these wakes in Geosat altimetry data. The systematics seen in this new data set support a fracture mechanics model for the dynamics of ridge propagation.