Publications

Export 2 results:
Sort by: Author Title Type [ Year  (Desc)]
2015
Neves, MC, Cabral J, Luttrell K, Figueiredo P, Rockwell T, Sandwell D.  2015.  The effect of sea level changes on fault reactivation potential in Portugal. Tectonophysics. 658:206-220.   10.1016/j.tecto.2015.07.023   AbstractWebsite

The aim of this study is to assess the impact of sea level changes on both the stress field and the potential of fault reactivation in west Iberia. The analysis is applied to a set of five active faults distributed across Portugal, selected for representing predominant fault directions and for being seismically active. The results show that the rise of sea level since the Last Glacial Maximum has produced flexural effects with distinct impacts on different faults. The Coulomb stress changes induced by the sea level rise along the S. Marcos-Quarteira (south Portugal) and the Horseshoe (offshore SW Iberia) faults are found to be extremely small, independently of the elastic plate thickness. These faults are thus unaffected by flexural effects related to ocean loading, and are unlikely to possess any paleoseismic record of this phenomenon. In contrast, the eustatic sea level rise during the late Pleistocene could have raised the Coulomb stress by 0.5-1 MPa along the Manteigas-Vilarica-Braganca (north Portugal) and Lower Tagus Valley (Lisbon area) fault systems. Such stress perturbations are probably sufficient to impact the seismic cycle of the Manteigas-Vilarica-Braganca fault, bringing it closer to failure and possibly triggering the earthquake clusters that have been observed in previous paleoseismologic studies. (C) 2015 Elsevier B.V. All rights reserved.

2003
Smith, B, Sandwell D.  2003.  Coulomb stress accumulation along the San Andreas Fault system. Journal of Geophysical Research-Solid Earth. 108   10.1029/2002jb002136   AbstractWebsite

[1] Stress accumulation rates along the primary segments of the San Andreas Fault system are computed using a three-dimensional (3-D) elastic half-space model with realistic fault geometry. The model is developed in the Fourier domain by solving for the response of an elastic half-space due to a point vector body force and analytically integrating the force from a locking depth to infinite depth. This approach is then applied to the San Andreas Fault system using published slip rates along 18 major fault strands of the fault zone. GPS-derived horizontal velocity measurements spanning the entire 1700 x 200 km region are then used to solve for apparent locking depth along each primary fault segment. This simple model fits remarkably well (2.43 mm/yr RMS misfit), although some discrepancies occur in the Eastern California Shear Zone. The model also predicts vertical uplift and subsidence rates that are in agreement with independent geologic and geodetic estimates. In addition, shear and normal stresses along the major fault strands are used to compute Coulomb stress accumulation rate. As a result, we find earthquake recurrence intervals along the San Andreas Fault system to be inversely proportional to Coulomb stress accumulation rate, in agreement with typical coseismic stress drops of 1-10 MPa. This 3-D deformation model can ultimately be extended to include both time-dependent forcing and viscoelastic response.