Export 3 results:
Sort by: Author Title Type [ Year  (Desc)]
Wei, M, Sandwell D, Fialko Y, Bilham R.  2011.  Slip on faults in the Imperial Valley triggered by the 4 April 2010 Mw 7.2 El Mayor-Cucapah earthquake revealed by InSAR. Geophysical Research Letters. 38   10.1029/2010gl045235   AbstractWebsite

Radar interferometry (InSAR), field measurements and creepmeters reveal surface slip on multiple faults in the Imperial Valley triggered by the main shock of the 4 April 2010 El Mayor-Cucapah M(w) 7.2 earthquake. Co-seismic offsets occurred on the San Andreas, Superstition Hills, Imperial, Elmore Ranch, Wienert, Coyote Creek, Elsinore, Yuha, and several minor faults near the town of Ocotillo at the northern end of the mainshock rupture. We documented right-lateral slip (<40 mm) on northwest-striking faults and left-lateral slip (<40 mm) on southwest-striking faults. Slip occurred on 15-km- and 20-km-long segments of the San Andreas Fault in the Mecca Hills (<= 50 mm) and Durmid Hill (<= 10 mm) respectively, and on 25 km of the Superstition Hills Fault (<= 37 mm). Field measurements of slip on the Superstition Hills Fault agree with InSAR and creepmeter measurements to within a few millimeters. Dislocation models of the InSAR data from the Superstition Hills Fault confirm that creep in this sequence, as in previous slip events, is confined to shallow depths (<3 km). Citation: Wei, M., D. Sandwell, Y. Fialko, and R. Bilham (2011), Slip on faults in the Imperial Valley triggered by the 4 April 2010 Mw 7.2 El Mayor-Cucapah earthquake revealed by InSAR, Geophys. Res. Lett., 38, L01308, doi:10.1029/2010GL045235.

Lyons, S, Sandwell D.  2003.  Fault creep along the southern San Andreas from interferometric synthetic aperture radar, permanent scatterers, and stacking. Journal of Geophysical Research-Solid Earth. 108   10.1029/2002jb001831   AbstractWebsite

[1] Interferometric synthetic aperture radar (InSAR) provides a practical means of mapping creep along major strike-slip faults. The small amplitude of the creep signal (<10 mm/yr), combined with its short wavelength, makes it difficult to extract from long time span interferograms, especially in agricultural or heavily vegetated areas. We utilize two approaches to extract the fault creep signal from 37 ERS SAR images along the southern San Andreas Fault. First, amplitude stacking is utilized to identify permanent scatterers, which are then used to weight the interferogram prior to spatial filtering. This weighting improves correlation and also provides a mask for poorly correlated areas. Second, the unwrapped phase is stacked to reduce tropospheric and other short-wavelength noise. This combined processing enables us to recover the near-field (&SIM;200 m) slip signal across the fault due to shallow creep. Displacement maps from 60 interferograms reveal a diffuse secular strain buildup, punctuated by localized interseismic creep of 4-6 mm/yr line of sight (LOS, 12-18 mm/yr horizontal). With the exception of Durmid Hill, this entire segment of the southern San Andreas experienced right-lateral triggered slip of up to 10 cm during the 3.5-year period spanning the 1992 Landers earthquake. The deformation change following the 1999 Hector Mine earthquake was much smaller (<1 cm) and broader than for the Landers event. Profiles across the fault during the interseismic phase show peak-to-trough amplitude ranging from 15 to 25 mm/yr (horizontal component) and the minimum misfit models show a range of creeping/locking depth values that fit the data.

Fialko, Y, Sandwell D, Agnew D, Simons M, Shearer P, Minster B.  2002.  Deformation on nearby faults induced by the 1999 Hector Mine earthquake. Science. 297:1858-1862.   10.1126/science.1074671   AbstractWebsite

Interferometric Synthetic Aperture Radar observations of surface deformation due to the 1999 Hector Mine earthquake reveal motion on several nearby faults of the eastern California shear zone. We document both vertical and horizontal displacements of several millimeters to several centimeters across kilometer-wide zones centered on pre-existing faults. Portions of some faults experienced retrograde (that is, opposite to their long-term geologic slip) motion during or shortly after the earthquake. The observed deformation likely represents elastic response of compliant fault zones to the permanent co-seismic stress changes. The induced fault displacements imply decreases in the effective shear modulus within the kilometer-wide fault zones, indicating that the latter are mechanically distinct from the ambient crustal rocks.