Export 4 results:
Sort by: [ Author  (Asc)] Title Type Year
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z   [Show ALL]
Baer, G, Schattner U, Wachs D, Sandwell D, Wdowinski S, Frydman S.  2002.  The lowest place on Earth is subsiding - An InSAR (interferometric synthetic aperture radar) perspective. Geological Society of America Bulletin. 114:12-23.   10.1130/0016-7606(2002)114<0012:tlpoei>;2   AbstractWebsite

Since the early 1990s, sinkholes and wide, shallow subsidence features (WSSFs) have become major problems along the Dead Sea shores in Israel and Jordan. Sinkholes are readily observed in the field, but their locations and timing are unpredictable. WSSFs are often difficult to observe in the field. However, once identified, they delineate zones of instability and increasing hazard. In this study we identify, characterize, and measure rates of subsidence along the Dead Sea shores by the interferometric synthetic aperture radar (InSAR) technique. We analyze 16 SAR scenes acquired during the years 1992 to 1999 by the European Remote Sensing ERS-1 and ERS-2 satellites. The interferograms span periods of between 2 and 71 months. WSSFs are observed in the Lisan Peninsula and along the Dead Sea shores, in a variety of appearances, including circular and elongate coastal depressions (a few hundred meters to a few kilometers in length), depressions in ancient alluvial fans, and depressions along salt-diapir margins. Phase differences measured in our interferograms correspond to subsidence rates generally in the range of 0-20 mm/yr within the studied period, with exceptional high rates that exceed 60 mm/yr in two specific regions. During the study period, the level of the Dead Sea and of the associated ground water has dropped by similar to6 m. This water-level drop within an aquifer overlying fine-grained, marly layers, would be expected to have caused aquifer-system consolidation resulting in gradual subsidence. Comparison of our InSAR observations with calculations of the expected consolidation shows that in areas where marl layers are known to compose part of the upper 30 m of the profile, estimated consolidation settlements are of the order of the measured subsidence. Our observations also show that in certain locations, subsidence appears to be structurally controlled by faults, seaward landslides, and salt domes. Gradual subsidence is unlikely to be directly related to the sinkholes, excluding the use of the WSSFs features as predictable precursors to sinkhole formation.

Fialko, Y, Sandwell D, Agnew D, Simons M, Shearer P, Minster B.  2002.  Deformation on nearby faults induced by the 1999 Hector Mine earthquake. Science. 297:1858-1862.   10.1126/science.1074671   AbstractWebsite

Interferometric Synthetic Aperture Radar observations of surface deformation due to the 1999 Hector Mine earthquake reveal motion on several nearby faults of the eastern California shear zone. We document both vertical and horizontal displacements of several millimeters to several centimeters across kilometer-wide zones centered on pre-existing faults. Portions of some faults experienced retrograde (that is, opposite to their long-term geologic slip) motion during or shortly after the earthquake. The observed deformation likely represents elastic response of compliant fault zones to the permanent co-seismic stress changes. The induced fault displacements imply decreases in the effective shear modulus within the kilometer-wide fault zones, indicating that the latter are mechanically distinct from the ambient crustal rocks.

Malinverni, ES, Sandwell DT, Tassetti AN, Cappelletti L.  2014.  InSAR decorrelation to assess and prevent volcanic risk. European Journal of Remote Sensing. 47:537-556.   10.5721/EuJRS20144730   AbstractWebsite

SAR can be invaluable describing pre-eruption surface deformation and improving the understanding of volcanic processes. This work studies correlation of pairs of SAR images focusing on the influence of surface, climate conditions and acquisition band. Chosen L-band and C-band images (ENVISAT, ERS and ALOS) cover most of the Yellowstone caldera (USA) over a span of 4 years, sampling all the seasons. Interferograms and correlation maps are generated and studied in relation to snow depth and temperature. To isolate temporal decorrelation pairs of images with the shortest baseline are chosen. Results show good performance during winter, bad attitude towards wet snow and good coherence during summer with L-band performing better over vegetation.

Wei, M, Sandwell DT.  2010.  Decorrelation of L-Band and C-Band Interferometry Over Vegetated Areas in California. IEEE Transactions on Geoscience and Remote Sensing. 48:2942-2952.   10.1109/tgrs.2010.2043442   AbstractWebsite

Temporal decorrelation is one of the main limitations for recovering interseismic deformation along the San Andreas Fault system using interferometric synthetic aperture radar. To assess the improved correlation properties of L-band with respect to C-band, we analyzed L-band Advanced Land Observation Satellite (ALOS) interferograms with a range of temporal and spatial baselines over three vegetated areas in California and compared them with corresponding C-band European Remote Sensing Satellite (ERS) interferograms. Over the highly vegetated Northern California forests in the Coast Range area, ALOS remains remarkably well correlated over a 2-year period, whereas an ERS interferogram with a similar temporal and spatial baseline lost correlation. In Central California near Parkfield, we found a similar pattern in decorrelation behavior, which enabled the recovery of a fault creep and a local uplifting signal at L-band that was not apparent at C-band. In the Imperial Valley in Southern California, both ALOS and ERS have low correlation over farmlands. ALOS has lower correlation over some sandy surfaces than ERS, probably due to low signal-to-noise ratio. In general, L-band interferograms with similar seasonal acquisitions have higher correlation than those with dissimilar season. For both L-and C-band, correlation over vegetated areas decreases with time for intervals less than 1 year and then remains relatively constant at longer time intervals. The decorrelation time for L-band is more than 2 years in the forest in California whereas that for C-band is less than 6 months. Overall, these results suggest that L-band interferograms will reveal near-fault interseismic deformation once sufficient data become available.