Publications

Export 4 results:
Sort by: Author [ Title  (Desc)] Type Year
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z   [Show ALL]
T
Smith, B, Sandwell D.  2004.  A three-dimensional semianalytic viscoelastic model for time-dependent analyses of the earthquake cycle. Journal of Geophysical Research-Solid Earth. 109   10.1029/2004jb003185   AbstractWebsite

[ 1] Exploring the earthquake cycle for large, complex tectonic boundaries that deform over thousands of years requires the development of sophisticated and efficient models. In this paper we introduce a semianalytic three-dimensional (3-D) linear viscoelastic Maxwell model that is developed in the Fourier domain to exploit the computational advantages of the convolution theorem. A new aspect of this model is an analytic solution for the surface loading of an elastic plate overlying a viscoelastic half-space. When fully implemented, the model simulates ( 1) interseismic stress accumulation on the upper locked portion of faults, ( 2) repeated earthquakes on prescribed fault segments, and ( 3) the viscoelastic response of the asthenosphere beneath the plate following episodic ruptures. We verify both the analytic solution and computer code through a variety of 2-D and 3-D tests and examples. On the basis of the methodology presented here, it is now possible to explore thousands of years of the earthquake cycle along geometrically complex 3-D fault systems.

M
Sandwell, D, Smith-Konter B.  2018.  Maxwell: A semi-analytic 4D code for earthquake cycle modeling of transform fault systems. Computers & Geosciences. 114:84-97.   10.1016/j.cageo.2018.01.009   AbstractWebsite

We have developed a semi-analytic approach (and computational code) for rapidly calculating 3D time-dependent deformation and stress caused by screw dislocations imbedded within an elastic layer overlying a Maxwell viscoelastic half-space. The maxwell model is developed in the Fourier domain to exploit the computational advantages of the convolution theorem, hence substantially reducing the computational burden associated with an arbitrarily complex distribution of force couples necessary for fault modeling. The new aspect of this development is the ability to model lateral variations in shear modulus. Ten benchmark examples are provided for testing and verification of the algorithms and code. One final example simulates interseismic deformation along the San Andreas Fault System where lateral variations in shear modulus are included to simulate lateral variations in lithospheric structure.

L
Mellors, RJ, Sichoix L, Sandwell DT.  2002.  Lack of precursory slip to the 1999 Hector Mine, California, earthquake as constrained by InSAR. Bulletin of the Seismological Society of America. 92:1443-1449.   10.1785/0120010244   AbstractWebsite

We looked for evidence of interseismic strain occurring between the 1992 Landers earthquake and the 1999 Hector Mine earthquake near the Lavic Lake and Bullion faults by using interferometric synthetic aperture radar (InSAR). Interferograms covering the Hector Mine epicentral region were studied for possible slip along the Bullion and Lavic Lake faults by both visual inspection and a matched filter technique intended to emphasize slip located at the nucleation point. Some indications of possible deformation associated with the 5 July 1992 M-L 5.4 Pisgah event was observed, but high decorrelation prevented a conclusive determination. We have seen no evidence for precursory slip in the epicentral region up to 30 days before the Hector Mine event. We estimated that the slip equivalent to a M-w 4.5 event would have been observable in the months before the Hector Mine event, and this places an upper bound on the long-term precursory slip, had it occurred. We have noted that InSAR is well suited for detecting precursory slip in general due to the high spatial resolution and the lack of ground instrumentation required but that the detection level depends on the depth and orientation of the slip.

I
Kaneko, Y, Fialko Y, Sandwell DT, Tong X, Furuya M.  2013.  Interseismic deformation and creep along the central section of the North Anatolian Fault (Turkey): InSAR observations and implications for rate-and-state friction properties. Journal of Geophysical Research-Solid Earth. 118:316-331.   10.1029/2012jb009661   AbstractWebsite

We present high-resolution measurements of interseismic deformation along the central section of the North Anatolian Fault (NAF) in Turkey using interferometric synthetic aperture radar data from the Advanced Land Observing Satellite and Envisat missions. We generated maps of satellite line-of-sight velocity using five ascending Advanced Land Observing Satellite tracks and one descending Envisat track covering the NAF between 31.2 degrees E and 34.3 degrees E. The line-of-sight velocity reveals discontinuities of up to similar to 5 mm/yr across the Ismetpasa segment of the NAF, implying surface creep at a rate of similar to 9 mm/yr; this is a large fraction of the inferred slip rate of the NAF (21-25 mm/yr). The lateral extent of significant surface creep is about 75 km. We model the inferred surface velocity and shallow fault creep using numerical simulations of spontaneous earthquake sequences that incorporate laboratory-derived rate and state friction. Our results indicate that frictional behavior in the Ismetpasa segment is velocity strengthening at shallow depths and transitions to velocity weakening at a depth of 3-6 km. The inferred depth extent of shallow fault creep is 5.5-7 km, suggesting that the deeper locked portion of the partially creeping segment is characterized by a higher stressing rate, smaller events, and shorter recurrence interval. We also reproduce surface velocity in a locked segment of the NAF by fault models with velocity-weakening conditions at shallow depth. Our results imply that frictional behavior in a shallow portion of major active faults with little or no shallow creep is mostly velocity weakening. Citation: Kaneko, Y., Y. Fialko, D. T. Sandwell, X. Tong, and M. Furuya (2013), Interseismic deformation and creep along the central section of the North Anatolian Fault (Turkey): InSAR observations and implications for rate-and-state friction properties, J. Geophys. Res. Solid Earth, 118, 316-331, doi: 10.1029/2012JB009661.