Publications

Export 2 results:
Sort by: Author Title Type [ Year  (Desc)]
2014
Lindsey, EO, Fialko Y, Bock Y, Sandwell DT, Bilham R.  2014.  Localized and distributed creep along the southern San Andreas Fault. Journal of Geophysical Research-Solid Earth. 119:7909-7922.   10.1002/2014jb011275   AbstractWebsite

We investigate the spatial pattern of surface creep and off-fault deformation along the southern segment of the San Andreas Fault using a combination of multiple interferometric synthetic aperture radar viewing geometries and survey-mode GPS occupations of a dense array crossing the fault. Radar observations from Envisat during the period 2003-2010 were used to separate the pattern of horizontal and vertical motion, providing a high-resolution image of uplift and shallow creep along the fault trace. The data reveal pervasive shallow creep along the southernmost 50 km of the fault. Creep is localized on a well-defined fault trace only in the Mecca Hills and Durmid Hill areas, while elsewhere creep appears to be distributed over a 1-2 km wide zone surrounding the fault. The degree of strain localization is correlated with variations in the local fault strike. Using a two-dimensional boundary element model, we show that stresses resulting from slip on a curved fault can promote or inhibit inelastic failure within the fault zone in a pattern matching the observations. The occurrence of shallow, localized interseismic fault creep within mature fault zones may thus be partly controlled by the local fault geometry and normal stress, with implications for models of fault zone evolution, shallow coseismic slip deficit, and geologic estimates of long-term slip rates. Key PointsShallow creep is pervasive along the southernmost 50 km of the San Andreas FaultCreep is localized only along transpressional fault segmentsIn transtensional areas, creep is distributed over a 1-2 km wide fault zone

2006
Smith, BR, Sandwell DT.  2006.  A model of the earthquake cycle along the San Andreas Fault System for the past 1000 years. Journal of Geophysical Research-Solid Earth. 111   10.1029/2005jb003703   AbstractWebsite

[1] We simulate 1000 years of the earthquake cycle along the San Andreas Fault System by convolving best estimates of interseismic and coseismic slip with the Green's function for a point dislocation in an elastic plate overlying a viscoelastic half-space. Interseismic slip rate is based on long-term geological estimates while fault locking depths are derived from horizontal GPS measurements. Coseismic and postseismic deformation is modeled using 70 earthquake ruptures, compiled from both historical data and paleoseismic data. This time-dependent velocity model is compared with 290 present-day geodetic velocity vectors to place bounds on elastic plate thickness and viscosity of the underlying substrate. Best fit models (RMS residual of 2.46 mm/yr) require an elastic plate thickness greater than 60 km and a substrate viscosity between 2 x 10(18) and 5 x 10(19) Pa s. These results highlight the need for vertical velocity measurements developed over long time spans (> 20 years). Our numerical models are also used to investigate the 1000-year evolution of Coulomb stress. Stress is largely independent of assumed rheology, but is very sensitive to the slip history on each fault segment. As expected, present-day Coulomb stress is high along the entire southern San Andreas because there have been no major earthquakes over the past 150 - 300 years. Animations S1 and S2 of the time evolution of vector displacement and Coulomb stress are available as auxiliary material.