Publications

Export 2 results:
Sort by: Author Title Type [ Year  (Desc)]
2019
DeSanto, JB, Chadwell CD, Sandwell DT.  2019.  Kinematic post-processing of ship navigation data using precise point positioning. Journal of Navigation. 72:795-804.   10.1017/s0373463318000887   AbstractWebsite

Seafloor geodetic studies such as Global Positioning System (GPS)-Acoustic experiments often require the measurement platform on the sea surface to be positioned accurately to within a few centimetres. In this paper, we test the utility of Precise Point Positioning (PPP) for this application with two experiments. The first fixed platform experiment is a comparison between three independent processing software packages: Positioning and Navigation Data Analyst (PANDA), Global Navigation Satellite System-Inferred Positioning System and Orbit Analysis Simulation Software (GIPSY-OASIS), and the Canadian Spatial Reference System (CSRS)) and a more accurate solution based on conventional differential processing of a remote GPS station in the Aleutian Islands. The second moving platform experiment is a comparison among the three PPP software packages using 40 hours of ship navigation data collected during the Roger Revelle RR1605 cruise 170 nautical miles southwest of Palau in May 2016. We found the PPP solutions were repeatable to 5 center dot 49 cm in the horizontal components and 12 center dot 4 cm in the vertical component. This demonstrates not only that PPP is a useful tool for positioning marine platforms in remote locations, but also that modern ship navigation instruments such as the Kongsberg Seapath 330 + are suitable for seafloor geodetic application.

2016
DeSanto, JB, Sandwell DT, Chadwell CD.  2016.  Seafloor geodesy from repeated sidescan sonar surveys. Journal of Geophysical Research-Solid Earth. 121:4800-4813.   10.1002/2016jb013025   AbstractWebsite

Accurate seafloor geodetic methods are critical to the study of marine natural hazards such as megathrust earthquakes, landslides, and volcanoes. We propose digital image correlation of repeated shipboard sidescan sonar surveys as a measurement of seafloor deformation. We test this method using multibeam surveys collected in two locales: 2500m deep lightly sedimented seafloor on the flank of a spreading ridge and 4300m deep heavily sedimented seafloor far from any plate boundary. Correlation of these surveys are able to recover synthetic displacements in the across-track (range) direction accurate to within 1m and in the along-track (azimuth) direction accurate to within 1-10m. We attribute these accuracies to the inherent resolution of sidescan data being better in the range dimension than the azimuth dimension. These measurements are primarily limited by the accuracy of the ship navigation. Dual-frequency GPS units are accurate to approximate to 10cm, but single-frequency GPS units drift on the order of 1m/h and are insufficient for geodetic application.