Publications

Export 2 results:
Sort by: Author Title Type [ Year  (Desc)]
2008
Myer, D, Sandwell D, Brooks B, Foster J, Shimada M.  2008.  Inflation along Kilauea's Southwest Rift Zone in 2006. Journal of Volcanology and Geothermal Research. 177:418-424.   10.1016/j.jvolgeores.2008.06.006   AbstractWebsite

We report on InSAR and GPS results showing the first crustal inflation along the southwest rift zone at Kilauea volcano in over 20 years. Two independent interferograms (May 2-August 2, 2006 and June 22-Nov 7, 2006) from the ALOS PALSAR instrument reveal domal uplift located southwest of the main caldera. The uplift is bounded on the northeast by the caldera and follows the southwest rift zone for about 12 km. It is approximately 8 km wide. We use data derived from permanent GPS stations to calibrate the InSAR displacement data and estimate uplift of 7.7 cm during the first interferogram and 8.9 cm during the second with line-of-sight volumes of 2.8 x 10(6) m(3) and 3.0 X 10(6) m(3) respectively. The earthquake record for the periods before, during, and after inflation shows that a swarm of shallow earthquakes (z<5 km) signaled the beginning of the uplift and that elevated levels of shallow seismicity along the rift zones occurred throughout the uplift period. GPS data indicate that the inflation occurred steadily over nine months between mid-January and mid-October, 2006 making injection of a sill unlikely. We attribute the inflation to recharge of a shallow ductile area under the SWRZ. (c) 2008 Elsevier B.V. All rights reserved.

2007
Luttrell, K, Sandwell D, Smith-Konter B, Bills B, Bock Y.  2007.  Modulation of the earthquake cycle at the southern San Andreas fault by lake loading. Journal of Geophysical Research-Solid Earth. 112   10.1029/2006jb004752   AbstractWebsite

Changes in the level of ancient Lake Cahuilla over the last 1500 years in the Salton Trough alter the state of stress by bending the lithosphere in response to the applied lake load and by varying the pore pressure magnitude within the crust. The recurrence interval of the lake is similar to the recurrence interval of rupture on the southern San Andreas and San Jacinto faults, both of which are partially covered by the lake at its highstand. Furthermore, four of the last five ruptures on the southern San Andreas fault have occurred near a time of substantial lake level change. We investigate the effect of Coulomb stress perturbations on local faults due to changing level of Lake Cahuilla to determine a possible role for the lake in affecting the timing of fault rupture. Coulomb stress is calculated with a three-dimensional model of an elastic plate overlying a viscoelastic half-space. Plate thickness and half-space relaxation time are adjusted to match observed vertical deformation since the last lake highstand. The lake cycle causes positive and negative Coulomb stress perturbations of 0.2-0.6 MPa on the southern San Andreas within the lake and 0.1-0.2 MPa on the southern San Andreas outside the lake. These Coulomb stress perturbations are comparable to stress magnitudes known to have triggered events at other faults along the North America-Pacific plate boundary.