Export 11 results:
Sort by: Author Title Type [ Year  (Desc)]
Xu, XH, Ward LA, Jiang JL, Smith-Konter B, Tymofyeyeva E, Lindsey EO, Sylvester AG, Sandwell DT.  2018.  Surface creep rate of the southern San Andreas Fault modulated by stress perturbations from nearby large events. Geophysical Research Letters. 45:10259-10268.   10.1029/2018gl080137   AbstractWebsite

A major challenge for understanding the physics of shallow fault creep has been to observe and model the long-term effect of stress changes on creep rate. Here we investigate the surface creep along the southern San Andreas fault (SSAF) using data from interferometric synthetic aperture radar spanning over 25 years (ERS 1992-1999, ENVISAT 2003-2010, and Sentinel-1 2014-present). The main result of this analysis is that the average surface creep rate increased after the Landers event and then decreased by a factor of 2-7 over the past few decades. We consider quasi-static and dynamic Coulomb stress changes on the SSAF due to these three major events. From our analysis, the elevated creep rates after the Landers can only be explained by static stress changes, indicating that even in the presence of dynamically triggered creep, static stress changes may have a long-lasting effect on SSAF creep rates. Plain Language Summary There are two significant conclusions from this study. First, we analyzed 25 years of InSAR measurements over the Southern San Andreas Fault system to document a major increase in the average creep rate following the 1992 Mw 7.3 Landers Earthquake which is then followed by creep rate reductions after the 1999 Mw 7.1 Hector Mine Earthquake and the 2010 Mw 7.2 El Major Cucapah Earthquake. Second, we attribute all these creep rate changes to the Coulomb stress variations from these three major Earthquakes. The dynamic Coulomb stress changes are similar for all three events, contributing to triggered creep on the SSAF. In contrast, the static Coulomb stress changes on the SSAF are positive after the Landers and negative after the Hector Mine and El Major Cucapah, coinciding with the higher average creep rate after the Landers and lower rates after the other two events. An implication of this study is that small but steady Coulomb stress changes have a larger impact on shallow creep than the larger dynamic stress changes associated with passing seismic waves. These results illuminate the significance of time scale-dependent complexity of shallow fault creep and how these behaviors are communicated by stress perturbations from regional earthquakes.

Tong, X, Sandwell DT, Schmidt DA.  2018.  Surface creep rate and moment accumulation rate along the Aceh segment of the Sumatran Fault from L-band ALOS-1/PALSAR-1 observations. Geophysical Research Letters. 45:3404-3412.   10.1002/2017gl076723   AbstractWebsite

We analyzed the interferometric synthetic aperture radar data from the ALOS-1/PALSAR-1 satellite to image the interseismic deformation along the Sumatran fault. The interferometric synthetic aperture radar time series analysis reveals up to similar to 20 mm/year of aseismic creep on the Aceh segment along the Northern Sumatran fault. This is a large fraction of the total slip rate across this fault. The spatial extent of the aseismic creep extends for similar to 100 km. The along-strike variation of the aseismic creep has an inverse "U" shape. An analysis of the moment accumulation rate shows that the central part of the creeping section accumulates moment at approximately 50% of the rate of the surrounding locked segments. An initial analysis of temporal variations suggests that the creep rate may be decelerating with time, suggesting that the creep rate is adjusting to a stress perturbation from nearby seismic activity. Our study has implications to the earthquake hazard along the northern Sumatran fault.

Sandwell, DT, Wessel P.  2016.  Interpolation of 2-D vector data using constraints from elasticity. Geophysical Research Letters. 43:10703-10709.   10.1002/2016gl070340   AbstractWebsite

We present a method for interpolation of sparse two-dimensional vector data. The method is based on the Green's functions of an elastic body subjected to in-plane forces. This approach ensures elastic coupling between the two components of the interpolation. Users may adjust the coupling by varying Poisson's ratio. Smoothing can be achieved by ignoring the smallest eigenvalues in the matrix solution for the strengths of the unknown body forces. We demonstrate the method using irregularly distributed GPS velocities from southern California. Our technique has been implemented in both the Generic Mapping Tools and MATLAB (R).

Tong, XP, Sandwell DT, Smith-Konter B.  2015.  An integral method to estimate the moment accumulation rate on the Creeping Section of the San Andreas Fault. Geophysical Journal International. 203:48-62.   10.1093/gji/ggv269   AbstractWebsite

Moment accumulation rate (also referred to as moment deficit rate) is a fundamental quantity for evaluating seismic hazard. The conventional approach for evaluating moment accumulation rate of creeping faults is to invert for the slip distribution from geodetic measurements, although even with perfect data these slip-rate inversions are non-unique. In this study, we show that the slip-rate versus depth inversion is not needed because moment accumulation rate can be estimated directly from surface geodetic data. We propose an integral approach that uses dense geodetic observations from Interferometric Synthetic Aperture Radar (InSAR) and the Global Positioning System (GPS) to constrain the moment accumulation rate. The moment accumulation rate is related to the integral of the product of the along-strike velocity and the distance from the fault. We demonstrate our methods by studying the Creeping Section of the San Andreas fault observed by GPS and radar interferometry onboard the ERS and ALOS satellites. Along-strike variation of the moment accumulation rate is derived in order to investigate the degree of partial locking of the Creeping Section. The central Creeping Segment has a moment accumulation rate of 0.25-3.1 x 10(15) Nm yr(-1) km(-1). The upper and lower bounds of the moment accumulation rates are derived based on the statistics of the noise. Our best-fitting model indicates that the central portion of the Creeping Section is accumulating seismic moment at rates that are about 5 per cent to 23 per cent of the fully locked Carrizo segment that will eventually be released seismically. A cumulative moment budget calculation with the historical earthquake catalogue (M > 5.5) since 1857 shows that the net moment deficit at present is equivalent to a M-w 6.3 earthquake.

Malinverni, ES, Sandwell DT, Tassetti AN, Cappelletti L.  2014.  InSAR decorrelation to assess and prevent volcanic risk. European Journal of Remote Sensing. 47:537-556.   10.5721/EuJRS20144730   AbstractWebsite

SAR can be invaluable describing pre-eruption surface deformation and improving the understanding of volcanic processes. This work studies correlation of pairs of SAR images focusing on the influence of surface, climate conditions and acquisition band. Chosen L-band and C-band images (ENVISAT, ERS and ALOS) cover most of the Yellowstone caldera (USA) over a span of 4 years, sampling all the seasons. Interferograms and correlation maps are generated and studied in relation to snow depth and temperature. To isolate temporal decorrelation pairs of images with the shortest baseline are chosen. Results show good performance during winter, bad attitude towards wet snow and good coherence during summer with L-band performing better over vegetation.

Lindsey, EO, Fialko Y, Bock Y, Sandwell DT, Bilham R.  2014.  Localized and distributed creep along the southern San Andreas Fault. Journal of Geophysical Research-Solid Earth. 119:7909-7922.   10.1002/2014jb011275   AbstractWebsite

We investigate the spatial pattern of surface creep and off-fault deformation along the southern segment of the San Andreas Fault using a combination of multiple interferometric synthetic aperture radar viewing geometries and survey-mode GPS occupations of a dense array crossing the fault. Radar observations from Envisat during the period 2003-2010 were used to separate the pattern of horizontal and vertical motion, providing a high-resolution image of uplift and shallow creep along the fault trace. The data reveal pervasive shallow creep along the southernmost 50 km of the fault. Creep is localized on a well-defined fault trace only in the Mecca Hills and Durmid Hill areas, while elsewhere creep appears to be distributed over a 1-2 km wide zone surrounding the fault. The degree of strain localization is correlated with variations in the local fault strike. Using a two-dimensional boundary element model, we show that stresses resulting from slip on a curved fault can promote or inhibit inelastic failure within the fault zone in a pattern matching the observations. The occurrence of shallow, localized interseismic fault creep within mature fault zones may thus be partly controlled by the local fault geometry and normal stress, with implications for models of fault zone evolution, shallow coseismic slip deficit, and geologic estimates of long-term slip rates. Key PointsShallow creep is pervasive along the southernmost 50 km of the San Andreas FaultCreep is localized only along transpressional fault segmentsIn transtensional areas, creep is distributed over a 1-2 km wide fault zone

Wei, M, Sandwell D, Smith-Konter B.  2010.  Optimal combination of InSAR and GPS for measuring interseismic crustal deformation. Advances in Space Research. 46:236-249.   10.1016/j.asr.2010.03.013   AbstractWebsite

High spatial resolution measurements of interseismic deformation along major faults are critical for understanding the earthquake cycle and for assessing earthquake hazard. We propose a new remove/filter/restore technique to optimally combine GPS and InSAR data to measure interseismic crustal deformation, considering the spacing of GPS stations in California and the characteristics of interseismic signal and noise using InSAR. To constrain the longer wavelengths (>40 km) we use GPS measurements, combined with a dislocation model, and for the shorter wavelength information we rely on InSAR measurements. Expanding the standard techniques, which use a planar ramp to remove long wavelength error, we use a Gaussian filter technique. Our method has the advantage of increasing the signal-to-noise ratio, controlling the variance of atmosphere error, and being isotropic. Our theoretical analysis indicates this technique can improve the signal-to-noise ratio by up to 20%. We test this method along three segments of the San Andreas Fault (Southern section near Salton Sea, Creeping section near Parkfield and Mojave/Big Bend section near Los Angeles), and find improvements of 26%, 11% and 8% in these areas, respectively. Our data shows a zone of uplift to the west of the Creeping section of the San Andreas Fault and an area of subsidence near the city of Lancaster. This work suggests that after only 5 years of data collection, ALOS interferograms will provide a major improvement in measuring details of interseismic deformation. (C) 2010 COSPAR. Published by Elsevier Ltd. All rights reserved.

Tong, XP, Sandwell DT, Fialko Y.  2010.  Coseismic slip model of the 2008 Wenchuan earthquake derived from joint inversion of interferometric synthetic aperture radar, GPS, and field data. Journal of Geophysical Research-Solid Earth. 115   10.1029/2009jb006625   AbstractWebsite

We derived a coseismic slip model for the M(w) 7.9 2008 Wenchuan earthquake on the basis of radar line-of-sight displacements from ALOS interferograms, GPS vectors, and geological field data. Available interferometric synthetic aperture radar (InSAR) data provided a nearly complete coverage of the surface deformation along both ascending (fine beam mode) and descending orbits (ScanSAR to ScanSAR mode). The earthquake was modeled using four subfaults with variable geometry and dip to capture the simultaneous rupture of both the Beichuan fault and the Pengguan fault. Our model misfits show that the InSAR and GPS data are highly compatible; the combined inversion yields a 93% variance reduction. The best fit model has fault planes that rotate from shallow dip in the south (35 degrees) to nearly vertical dip toward the north (70 degrees). Our rupture model is complex with variations in both depth and rake along two major fault strands. In the southern segment of the Beichuan fault, the slip is mostly thrust (<13 m) and occurred principally in the upper 10 km of the crust; the rupture progressively transformed to right-lateral strike slip as it propagated northeast (with maximum offsets of 7 m). Our model suggests that most of the moment release was limited to the shallow part of the crust (depth less than 10 km). We did not find any "shallow slip deficit" in the slip depth distribution of this mixed mechanism earthquake. Aftershocks were primarily distributed below the section of the fault that ruptured coseismically.

Myer, D, Sandwell D, Brooks B, Foster J, Shimada M.  2008.  Inflation along Kilauea's Southwest Rift Zone in 2006. Journal of Volcanology and Geothermal Research. 177:418-424.   10.1016/j.jvolgeores.2008.06.006   AbstractWebsite

We report on InSAR and GPS results showing the first crustal inflation along the southwest rift zone at Kilauea volcano in over 20 years. Two independent interferograms (May 2-August 2, 2006 and June 22-Nov 7, 2006) from the ALOS PALSAR instrument reveal domal uplift located southwest of the main caldera. The uplift is bounded on the northeast by the caldera and follows the southwest rift zone for about 12 km. It is approximately 8 km wide. We use data derived from permanent GPS stations to calibrate the InSAR displacement data and estimate uplift of 7.7 cm during the first interferogram and 8.9 cm during the second with line-of-sight volumes of 2.8 x 10(6) m(3) and 3.0 X 10(6) m(3) respectively. The earthquake record for the periods before, during, and after inflation shows that a swarm of shallow earthquakes (z<5 km) signaled the beginning of the uplift and that elevated levels of shallow seismicity along the rift zones occurred throughout the uplift period. GPS data indicate that the inflation occurred steadily over nine months between mid-January and mid-October, 2006 making injection of a sill unlikely. We attribute the inflation to recharge of a shallow ductile area under the SWRZ. (c) 2008 Elsevier B.V. All rights reserved.

Lyons, S, Sandwell D.  2003.  Fault creep along the southern San Andreas from interferometric synthetic aperture radar, permanent scatterers, and stacking. Journal of Geophysical Research-Solid Earth. 108   10.1029/2002jb001831   AbstractWebsite

[1] Interferometric synthetic aperture radar (InSAR) provides a practical means of mapping creep along major strike-slip faults. The small amplitude of the creep signal (<10 mm/yr), combined with its short wavelength, makes it difficult to extract from long time span interferograms, especially in agricultural or heavily vegetated areas. We utilize two approaches to extract the fault creep signal from 37 ERS SAR images along the southern San Andreas Fault. First, amplitude stacking is utilized to identify permanent scatterers, which are then used to weight the interferogram prior to spatial filtering. This weighting improves correlation and also provides a mask for poorly correlated areas. Second, the unwrapped phase is stacked to reduce tropospheric and other short-wavelength noise. This combined processing enables us to recover the near-field (&SIM;200 m) slip signal across the fault due to shallow creep. Displacement maps from 60 interferograms reveal a diffuse secular strain buildup, punctuated by localized interseismic creep of 4-6 mm/yr line of sight (LOS, 12-18 mm/yr horizontal). With the exception of Durmid Hill, this entire segment of the southern San Andreas experienced right-lateral triggered slip of up to 10 cm during the 3.5-year period spanning the 1992 Landers earthquake. The deformation change following the 1999 Hector Mine earthquake was much smaller (<1 cm) and broader than for the Landers event. Profiles across the fault during the interseismic phase show peak-to-trough amplitude ranging from 15 to 25 mm/yr (horizontal component) and the minimum misfit models show a range of creeping/locking depth values that fit the data.

Lyons, SN, Bock Y, Sandwell DT.  2002.  Creep along the imperial fault, southern California, from GPS measurements. Journal of Geophysical Research-Solid Earth. 107   10.1029/2001jb000763   AbstractWebsite

[1] In May of 1999 and 2000, we surveyed with Global Positioning System (GPS) 46 geodetic monuments established by Imperial College, London, in a dense grid (half-mile spacing) along the Imperial Fault, with three additional National Geodetic Survey sites serving as base stations. These stations were previously surveyed in 1991 and 1993. The Imperial College sites were surveyed in rapid-static mode (15-20 min occupations), while the NGS sites continuously received data for 10 h d(-1). Site locations were calculated using the method of instantaneous positioning, and velocities were determined relative to one of the NGS base stations. Combining our results with far-field velocities from the Southern California Earthquake Center (SCEC), we fit the data to a simple elastic dislocation model with 35 mm yr(-1) of right-lateral slip below 10 km and 9 mm yr(-1) of creep from the surface down to 3 km. The velocity field is asymmetrical across the fault and could indicate a dipping fault plane to the northeast or a viscosity contrast across the fault.