Export 2 results:
Sort by: Author Title Type [ Year  (Desc)]
Lyons, SN, Sandwell DT, Smith WHF.  2000.  Three-dimensional estimation of elastic thickness under the Louisville Ridge. Journal of Geophysical Research-Solid Earth. 105:13239-13252.   10.1029/2000jb900065   AbstractWebsite

A three-dimensional approach to estimating elastic thickness is presented which uses dense satellite altimetry and sparse ship bathymetry. This technique is applied to the Louisville Ridge system to study the tectonic history of the region. The inversion is performed as both a first-order approximation and a nonlinear relationship between gravity and topography based on Parker's [1973] equation. While the higher-order effect on the gravity anomaly is nearly zero for most of the region, the magnitude is significant over the summits of the ridge. Nevertheless, the inclusion of the nonlinear terms has only a minor influence on the elastic thickness estimate within each region, lowering the value by similar to 1-2 km compared with the linear result. The incorrect assumption of two dimensionality for circular features exhibits a marked effect on the gravitational anomaly, resulting in false sidelobe structure of nearly 20 mGal for large seamounts. Our elastic thickness estimates are compared with the contradictory values obtained in previous studies by Cazenave and Dominh [1984] and Watts et al. [1988]. We find an increasing elastic thickness along the chain from southeast to northwest, with a discontinuity along the Wishbone scarp. The jump in elastic thickness values northwest of the scarp appears to be an indication of an age discontinuity caused by an extinct spreading center north of the ridge.

Smith, WHF, Sandwell DT.  1994.  Bathymetric Prediction from Dense Satellite Altimetry and Sparse Shipboard Bathymetry. Journal of Geophysical Research-Solid Earth. 99:21803-21824.   10.1029/94jb00988   AbstractWebsite

The southern oceans (south of 30 degrees S) are densely covered with satellite-derived gravity data (track spacing 2-4 km) and sparsely covered with shipboard depth soundings (hundreds of kilometers between tracks in some areas). Flexural isostatic compensation theory suggests that bathymetry and downward continued gravity data may show linear correlation in a band of wavelengths 15-160 km, if sediment cover is thin and seafloor relief is moderate. At shorter wavelengths, the gravity field is insensitive to seafloor topography because of upward continuation from the seafloor to the sea surface; at longer wavelengths, isostatic compensation cancels out most of the gravity field due to the seafloor topography. We combine this theory with Wiener optimization theory and empirical evidence for gravity noise-to-signal ratios to design low-pass and band-pass filters to use in predicting bathymetry from gravity. The prediction combines long wavelengths (> 160 km) from low-pass-filtered soundings with an intermediate-wavelength solution obtained from multiplying downward continued, band-pass filtered (15-160 km) gravity data by a scaling factor S. S is empirically determined from the correlation between gravity data and existing soundings in the 15-160 km band by robust regression and varies at long wavelengths. We find that areas with less than 200 m of sediment cover show correlation between gravity and bathymetry significant at the 99% level, and S may be related to the density of seafloor materials in these areas. The prediction has a horizontal resolution limit of 5-10 km in position and is within 100 m of actual soundings at 50% of grid points and within 240 m at 80% of these. In areas of very rugged topography the prediction underestimates the peak amplitudes of seafloor features. Images of the prediction reveal many tectonic features not seen on any existing bathymetric charts. Because the prediction relies on the gravity field at wavelengths < 160 km, it is insensitive to errors in the navigation of sounding lines but also cannot completely reproduce them. Therefore it may be used to locate tectonic features but should not be used to assess hazards to navigation. The prediction is available from the National Geophysical Data Center in both digital and printed form.