Export 7 results:
Sort by: Author Title Type [ Year  (Desc)]
Neves, MC, Cabral J, Luttrell K, Figueiredo P, Rockwell T, Sandwell D.  2015.  The effect of sea level changes on fault reactivation potential in Portugal. Tectonophysics. 658:206-220.   10.1016/j.tecto.2015.07.023   AbstractWebsite

The aim of this study is to assess the impact of sea level changes on both the stress field and the potential of fault reactivation in west Iberia. The analysis is applied to a set of five active faults distributed across Portugal, selected for representing predominant fault directions and for being seismically active. The results show that the rise of sea level since the Last Glacial Maximum has produced flexural effects with distinct impacts on different faults. The Coulomb stress changes induced by the sea level rise along the S. Marcos-Quarteira (south Portugal) and the Horseshoe (offshore SW Iberia) faults are found to be extremely small, independently of the elastic plate thickness. These faults are thus unaffected by flexural effects related to ocean loading, and are unlikely to possess any paleoseismic record of this phenomenon. In contrast, the eustatic sea level rise during the late Pleistocene could have raised the Coulomb stress by 0.5-1 MPa along the Manteigas-Vilarica-Braganca (north Portugal) and Lower Tagus Valley (Lisbon area) fault systems. Such stress perturbations are probably sufficient to impact the seismic cycle of the Manteigas-Vilarica-Braganca fault, bringing it closer to failure and possibly triggering the earthquake clusters that have been observed in previous paleoseismologic studies. (C) 2015 Elsevier B.V. All rights reserved.

Sandwell, D, Schubert G.  2010.  A contraction model for the flattening and equatorial ridge of Iapetus. Icarus. 210:817-822.   10.1016/j.icarus.2010.06.025   AbstractWebsite

Others have explained the excess flattening of Iapetus by a model in which the moon formed at a high spin rate, achieved isostatic equilibrium by very rapid interior heating caused by short-lived radioactive isotopes (SLRI), and subsequently cooled, locking in the excess flattening with respect to an equilibrium shape at its present spin rate. Here we propose an alternate model that does not require an unusually high initial spin rate or the SLRI. The initial formation of Iapetus results in a slightly oblate spheroid with porosity >10%. Radioactive heating by long-lived isotopes warms the interior to about 200 K, at which point it becomes ductile and the interior compacts by 10%, while the 120 km-thick exterior shell remains strong. The shell must deform to match the reduced volume of the ductile interior, and we propose that this deformation occurs along the equator, perhaps focused by a thinner equatorial shell. The final shape of the collapsed sphere matches the observed shape of Iapetus today, described as an oblate ellipse, except along the equator where strain concentration forms a broad ridge. To maintain this non-equilibrium shape, the thickness of the shell must exceed 120 km. Testing the equatorial focusing hypothesis will require a model that includes non-linear processes to account for the finite yield strength of the thick lithosphere. Nevertheless, we show that the stress in the lithosphere generated by the contraction of the interior is about 3 times greater than the stress needed to deform the lithosphere, so some type of lithospheric deformation is expected. (C) 2010 Elsevier Inc. All rights reserved.

Luttrell, K, Sandwell D.  2006.  Strength of the lithosphere of the Galilean satellites. Icarus. 183:159-167.   10.1016/j.icarus.2006.01.015   AbstractWebsite

Several approaches have been used to estimate the ice shell thickness on Callisto, Ganymede, and Europa. Here we develop a method for placing a strict lower bound on the thickness of the strong part of the shell (lithosphere) using measurements of topography. The minimal assumptions are that the strength of faults in the brittle lithosphere is controlled by lithostatic pressure according to Byerlee's law and the shell has relatively uniform density and thickness. Under these conditions, the topography of the ice provides a direct measure of the bending moment in the lithosphere. This topographic bending moment Must be less than the saturation bending moment of the yield strength envelope derived front Byerlee's law. The model predicts that the topographic amplitude spectrum decreases as the square of the topographic wavelength. This explains why Europa is rugged at shorter wavelengths ( similar to 10 km) but extremely smooth, and perhaps conforming to an equipotential Surface, at longer wavelengths ( > 100 km). Previously compiled data on impact crater depth and diameter [Schenk, P.M., 2002. Nature 417, 419-421] on Europa show good agreement with the spectral decrease predicted by the model and require a lithosphere thicker than 2.5 km. A more realistic model, including a ductile lower lithosphere. requires a thickness greater than 3.5 km. Future measurements of topography in the 10-100 km wavelength hand will provide tight constraints on lithospheric strength. (c) 2006 Elsevier Inc. All riahts reserved.

Lyons, SN, Sandwell DT, Smith WHF.  2000.  Three-dimensional estimation of elastic thickness under the Louisville Ridge. Journal of Geophysical Research-Solid Earth. 105:13239-13252.   10.1029/2000jb900065   AbstractWebsite

A three-dimensional approach to estimating elastic thickness is presented which uses dense satellite altimetry and sparse ship bathymetry. This technique is applied to the Louisville Ridge system to study the tectonic history of the region. The inversion is performed as both a first-order approximation and a nonlinear relationship between gravity and topography based on Parker's [1973] equation. While the higher-order effect on the gravity anomaly is nearly zero for most of the region, the magnitude is significant over the summits of the ridge. Nevertheless, the inclusion of the nonlinear terms has only a minor influence on the elastic thickness estimate within each region, lowering the value by similar to 1-2 km compared with the linear result. The incorrect assumption of two dimensionality for circular features exhibits a marked effect on the gravitational anomaly, resulting in false sidelobe structure of nearly 20 mGal for large seamounts. Our elastic thickness estimates are compared with the contradictory values obtained in previous studies by Cazenave and Dominh [1984] and Watts et al. [1988]. We find an increasing elastic thickness along the chain from southeast to northwest, with a discontinuity along the Wishbone scarp. The jump in elastic thickness values northwest of the scarp appears to be an indication of an age discontinuity caused by an extinct spreading center north of the ridge.

Schubert, G, Sandwell DT.  1995.  A Global Survey of Possible Subduction Sites on Venus. Icarus. 117:173-196.   10.1006/icar.1995.1150   AbstractWebsite

About 10,000 km of trenches in chasmata and coronae have been identified as possible sites of retrograde subduction on Venus. All the sites have narrow deep trenches elongate along strike with arcuate planforms, ridge-trench-outer rise topographic profiles typical of terrestrial subduction zones, large outer rise curvatures >10(-7) m(-1), fractures parallel to the strike of the trench on the outer trench wall and outer rise, and no cross-strike fractures across the trench. Both the northern and southern margins of Latona Corona are possible subduction sites. Identification of a major graben between the two principal outer ridges in southern Latona Corona is evidence of back-are extension in the corona; the amount of extension is estimated to be more than 2-11 km. The moment exerted by the ridges of southern Latona Corona is insufficient to bend the lithosphere into the observed outer rise shape; a negatively buoyant subducted or underthrust slab is needed. Depending on the unknown trench migration rate, lithospheric subduction can make a significant contribution to mantle cooling on Venus. Venusian chasmata could have a dual character. They may be propagating rifts near major volcanic rises, and subduction trenches far from the rises in the lowlands. Subduction and rifting may occur in close proximity on Venus, unlike on Earth. Rifting induced by hotspots on Venus may be necessary to break the lithosphere and allow subduction to occur. Such a process could result in gradual lithospheric subduction or global, episodic overturn of the lithosphere. (C) 1995 Academic Press, Inc.

Sandwell, DT, Schubert G.  1992.  Evidence for Retrograde Lithospheric Subduction on Venus. Science. 257:766-770.   10.1126/science.257.5071.766   AbstractWebsite

Annular moats and outer rises around large Venus coronae such as Artemis, Latona, and Eithinoha are similar in arcuate planform and topography to the trenches and outer rises of terrestrial subduction zones. On Earth, trenches and outer rises are modeled as the flexural response of a thin elastic lithosphere to the bending moment of the subducted slab; this lithospheric flexure model also accounts for the trenches and outer rises outboard of the major coronae on Venus. Accordingly, it is proposed that retrograde lithospheric subduction may be occurring on the margins of the large Venus coronae while compensating back-arc extension is occurring in the expanding coronae interiors. Similar processes may be taking place at other deep arcuate trenches or chasmata on Venus such as those in the Dali-Diana chasmata area of eastern Aphrodite Terra.

Johnson, CL, Sandwell DT.  1992.  Joints in Venusian Lava Flows. Journal of Geophysical Research-Planets. 97:13601-13610. AbstractWebsite

Venusian plains regions, as imaged by the Magellan spacecraft, display many styles of tectonic and volcanic deformation. Radar images of several areas of the volcanic plains reveal polygonal patterns of bright lineations, Intersection geometries of the lineations defining the polygonal patterns are typical of those found in tensile networks. In addition, the polygonal patterns generally exhibit no preferred orientation, implying that they are the result of horizontally isotropic stress fields. Such stress fields usually arise on the Earth as a consequence of desiccation, freeze-thaw cycles, or cooling and produce mud cracks, ice-wedge polygons, and columnar joints, respectively. We propose that the polygonal patterns seen in the Magellan images of some of the volcanic plains are the result of thermal stresses. We consider two alternative scenarios which would generate sufficient tensile thermal stresses Lo cause failure. The first scenario is that of a cooling lava flow; the residual thermal stress which would develop (assuming no failure of the rock) is tensional and of the order of 400 MPa. This is much greater than the strength of unfractured terrestrial basalt (approximately 10 MPa), so we can expect joints to form during cooling of Venusian lava flows. However, the spacing of the polygonal lineations seen in Magellan images is typically 1-2 km, much larger than the largest spacings of decimeters for joints in terrestrial lavas. The second scenario involves an increased heat flux to the base of the lithosphere; the resulting thermal stresses cause the upper lithosphere to be in tension and the lower lithosphere to be in compression. Brittle tensile failure occurs near the surface due to the finite yield strength of the lithosphere. The maximum depth to which failure occurs increases with increasing elevation of the temperature gradient. For an initially 25-km-thick lithosphere and temperature gradient of ll-degrees/km, this maximum depth varies from 0.5 km to 2 km as the temperature gradient is increased to 12-degrees/km and 22-degrees/km, respectively. Both the cooling flow scenario and the heated lithosphere scenario produce isotropic tensile surface stress patterns, but the heated lithosphere model is more compatible with the kilometer scale of the polygonal patterns seen in Magellan images.