Publications

Export 3 results:
Sort by: Author Title Type [ Year  (Desc)]
1995
Schubert, G, Sandwell DT.  1995.  A Global Survey of Possible Subduction Sites on Venus. Icarus. 117:173-196.   10.1006/icar.1995.1150   AbstractWebsite

About 10,000 km of trenches in chasmata and coronae have been identified as possible sites of retrograde subduction on Venus. All the sites have narrow deep trenches elongate along strike with arcuate planforms, ridge-trench-outer rise topographic profiles typical of terrestrial subduction zones, large outer rise curvatures >10(-7) m(-1), fractures parallel to the strike of the trench on the outer trench wall and outer rise, and no cross-strike fractures across the trench. Both the northern and southern margins of Latona Corona are possible subduction sites. Identification of a major graben between the two principal outer ridges in southern Latona Corona is evidence of back-are extension in the corona; the amount of extension is estimated to be more than 2-11 km. The moment exerted by the ridges of southern Latona Corona is insufficient to bend the lithosphere into the observed outer rise shape; a negatively buoyant subducted or underthrust slab is needed. Depending on the unknown trench migration rate, lithospheric subduction can make a significant contribution to mantle cooling on Venus. Venusian chasmata could have a dual character. They may be propagating rifts near major volcanic rises, and subduction trenches far from the rises in the lowlands. Subduction and rifting may occur in close proximity on Venus, unlike on Earth. Rifting induced by hotspots on Venus may be necessary to break the lithosphere and allow subduction to occur. Such a process could result in gradual lithospheric subduction or global, episodic overturn of the lithosphere. (C) 1995 Academic Press, Inc.

1994
Johnson, CL, Sandwell DT.  1994.  Lithospheric Flexure on Venus. Geophysical Journal International. 119:627-647.   10.1111/j.1365-246X.1994.tb00146.x   AbstractWebsite

Topographic flexural signatures on Venus are generally associated with the outer edges of coronae, with some chasmata and with rift zones. Using Magellan altimetry profiles and grids of venusian topography, we identified 17 potential flexure sites. Both 2-D cartesian, and 2-D axisymmetric, thin-elastic plate models were used to establish the flexural parameter and applied load/bending moment. These parameters can be used to infer the thickness, strength and possibly the dynamics of the venusian lithosphere. Numerical simulations show that the 2-D model provides an accurate representation of the flexural parameter as long as the radius of the feature is several times the flexural parameter. However, an axisymmetric model must be used to obtain a reliable estimate of load/bending moment. 12 of the 17 areas were modelled with a 2-D thin elastic plate model, yielding best-fit effective elastic thicknesses in the range 12 to 34 km. We find no convincing evidence for flexure around smaller coronae, though five possible candidates have been identified. These five features show circumferential topographic signatures which, if interpreted as flexure, yield mean elastic thicknesses ranging from 6 to 22 km. We adopt a yield strength envelope for the venusian lithosphere based on a dry olivine rheology and on the additional assumption that strain rates on Venus are similar to, or lower than, strain rates on Earth. Many of the flexural signatures correspond to relatively high plate-bending curvatures so the upper and lower parts of the lithosphere should theoretically exhibit brittle fracture and flow, respectively. For areas where the curvatures are not too extreme, the estimated elastic thickness is used to estimate the larger mechanical thickness of the lithosphere. The large amplitude flexures in Aphrodite Terra predict complete failure of the plate, rendering mechanical thickness estimates from these features unreliable. One smaller corona also yielded an unreliable mechanical thickness estimate based on the marginal quality of the profile data. Reliable mechanical thicknesses found by forward modelling in this study are 21 km-37 km, significantly greater than the 13 km-20 km predictions based on heat-flow scaling arguments and chondritic thermal models. If the modelled topography is the result of lithospheric flexure, then our results for mechanical thickness, combined with the lack of evidence for flexure around smaller features, are consistent with a venusian lithosphere somewhat thicker than predicted. Dynamical models for bending of a viscous lithosphere at low strain rates predict a thick lithosphere, also consistent with low temperature gradients. Recent laboratory measurements indicate that dry crustal materials are much stronger than previously believed. Corresponding time-scales for gravitational relaxation are 10(8)-10(9) yr, making gravitational relaxation an unlikely mechanism for the generation of the few inferred flexural features. If dry olivine is also found to be stronger than previously believed, the mechanical thickness estimates for Venus will be reduced, and will be more consistent with the predictions of global heat scaling models.

1992
Sandwell, DT, Schubert G.  1992.  Flexural Ridges, Trenches, and Outer Rises around Coronae on Venus. Journal of Geophysical Research-Planets. 97:16069-16083.   10.1029/92JE01274   AbstractWebsite

High-resolution altimetry collected by the Magellan spacecraft reveals trench and outer rise topographic signatures around major coronae (e.g. Eithinoha, Heng-0, Artemis, and Latona). In addition, Magellan synthetic aperature radar images show circumferential fractures in areas where the plates are curved downward. Both observations suggest that the lithosphere around coronae is flexed downward by the weight of the overriding coronal rim or by the negative buoyancy of subducted lithosphere. We have modelled the trench and outer rise topography as a thin elastic plate subjected to a line load and bending moment beneath die corona rim. The approach was tested at northern Freyja Montes where the best fit elastic thickness is 18 km, in agreement with previously published results. The elastic thicknesses determined by modelling numerous profiles at Eithinoha, Heng-0, Artemis, and Latona are 15, 40, 37, and 35 km, respectively. At Eithinoha, Artemis, and Latona where the plates appear to be yielding, the maximum bending moments and elastic thicknesses are similar to those found at the Middle America, Mariana, and Aleutian trenches on Earth, respectively. Estimates of effective elastic thickness and plate curvature are used with a yield strength envelope model of the lithosphere to estimate lithospheric temperature gradients. At Heng-0, Artemis, and Latona, temperature gradients are less than 10 K/km, which correspond to conductive heat losses of less than one half the expected average planetary value. We propose two scenarios for the creation of the ridge, trench, and outer rise topography: differential thermal subsidence and lithospheric subduction. The topography of Heng-0 is well matched by the differential thermal subsidence model. However, at Artemis and Latona the amplitudes of the trench and outer rise signatures are a factor of 5 too large to be explained by thermal subsidence alone. In these cases we favor the lithospheric subduction model wherein the lithosphere outboard of the corona perimeter subducts (rolls back) and the corona diameter increase.