Publications

Export 2 results:
Sort by: Author Title Type [ Year  (Desc)]
2010
Wessel, P, Sandwell DT, Kim SS.  2010.  The Global Seamount Census. Oceanography. 23:24-33. AbstractWebsite

Seamounts are active or extinct undersea volcanoes with heights exceeding similar to 100 m. They represent a small but significant fraction of the volcanic extrusive budget for oceanic seafloor and their distribution gives information about spatial and temporal variations in intraplate volcanic activity. In addition, they sustain important ecological communities, determine habitats for fish, and act as obstacles to Currents, thus enhancing tidal energy dissipation and ocean mixing. Mapping the complete global distribution will help constrain models of seamount formation as well as aid in understanding marine habitats and deep ocean circulation. Two approaches have been used to map the global seamount distribution. Depth soundings from single- and multibeam echosounders can provide the most detailed maps with up to 200-m horizontal resolution. However, soundings from the > 5000 publicly available cruises sample only a small fraction of the ocean floor. Satellite altimetry can detect seamounts taller than similar to 1.5 km, and. studies using altimetry have produced seamount catalogues holding almost 13,000 seamounts. Based on the size-frequency relationship for larger seamounts, we predict over 100,000 seamounts > 1 km in height remain uncharted, and speculatively 25 million > 100 m in height. Future altimetry missions could improve on resolution and significantly decrease noise levels, allowing for an even larger number of intermediate (1-1.5-km height) seamounts to be detected. Recent retracking of the radar altimeter waveforms to improve the accuracy of the gravity field has resulted in a twofold increase in resolution. Thus, improved analyses of existing altimetry with better calibration from multibeam bathymetry could also increase census estimates.

2000
Maia, M, Ackermand D, Dehghani GA, Gente P, Hekinian R, Naar D, O'Connor J, Perrot K, Morgan JP, Ramillien G, Revillon S, Sabetian A, Sandwell D, Stoffers P.  2000.  The Pacific-Antarctic Ridge-Foundation hotspot interaction: a case study of a ridge approaching a hotspot. Marine Geology. 167:61-84.   10.1016/s0025-3227(00)00023-2   AbstractWebsite

The Foundation hotspot-Pacific-Antarctic Ridge (PAI) system is the best documented case of a fast spreading ridge approaching a hotspot and interacting with it. The morphology, crustal structure inferred from gravity anomalies and the chemical composition of the lavas of the axial area of the PAR show evidence of the influence of the hotspot, that is presently located roughly 35 km west of the spreading ridge axis. Along-axis variation in the Mantle Bouguer anomaly is about 28 mGal, corresponding to a crustal thickening of 1.5 km where the hotspot is nearer to the PAR. Anomalous ridge elevation is 650 m and the along-axis width of the chemical anomaly is 200 km. A comparison of these axial parameters with those derived for other ridge-hotspot systems, suggests that the amount of plume material reaching the ridge axis is smaller for the Foundation-PAR system. This implies a weaker connection between the plume and the ridge. Cumulative effects of a fast spreading rate and of a fast ridge-hotspot relative motion can be responsible for this weak plume-ridge flow. The how from the hotspot may be less efficiently channelled towards the ridge axis when a fast ridge is rapidly moving towards a hotspot. (C) 2000 Elsevier Science B.V. All rights reserved.