Export 5 results:
Sort by: Author Title [ Type  (Asc)] Year
Journal Article
Tong, XP, Sandwell D, Luttrell K, Brooks B, Bevis M, Shimada M, Foster J, Smalley R, Parra H, Soto JCB, Blanco M, Kendrick E, Genrich J, Caccamise DJ.  2010.  The 2010 Maule, Chile earthquake: Downdip rupture limit revealed by space geodesy. Geophysical Research Letters. 37   10.1029/2010gl045805   AbstractWebsite

Radar interferometry from the ALOS satellite captured the coseismic ground deformation associated with the 2010 Mw 8.8 Maule, Chile earthquake. The ALOS interferograms reveal a sharp transition in fringe pattern at similar to 150 km from the trench axis that is diagnostic of the downdip rupture limit of the Maule earthquake. An elastic dislocation model based on ascending and descending ALOS interferograms and 13 near-field 3-component GPS measurements reveals that the coseismic slip decreases more or less linearly from a maximum of 17 m (along-strike average of 6.5 m) at 18 km depth to near zero at 43-48 km depth, quantitatively indicating the downdip limit of the seismogenic zone. The depth at which slip drops to near zero appears to be at the intersection of the subducting plate with the continental Moho. Our model also suggests that the depth where coseismic slip vanishes is nearly uniform along the strike direction for a rupture length of similar to 600 km. The average coseismic slip vector and the interseismic velocity vector are not parallel, which can be interpreted as a deficit in strike-slip moment release. Citation: Tong, X., et al. (2010), The 2010 Maule, Chile earthquake: Downdip rupture limit revealed by space geodesy, Geophys. Res. Lett., 37, L24311, doi:10.1029/2010GL045805.

Marks, KM, Sandwell DT.  1991.  Analysis of Geoid Height Versus Topography for Oceanic Plateaus and Swells Using Nonbiased Linear-Regression. Journal of Geophysical Research-Solid Earth and Planets. 96:8045-8055.   10.1029/91jb00240   AbstractWebsite

We have investigated the relationship between geoid height and topography for 53 oceanic plateaus and swells to determine the mode of compensation. The ratio of geoid height to topography was obtained from the slope of a best line fit by functional analysis (i.e. nonbiased linear regression), a method that minimizes both geoid height and topography residuals. This method is more appropriate than traditional least squares analysis that minimizes only geoid height residuals, because uncertainties are present in both data types. We find that approximately half of the oceanic and continental plateaus analyzed have low ratios that are consistent with Airy-compensated crustal thickening. The remaining plateaus, however, have higher geoid/topography ratios than predicted by the simple Airy model, and the seismically determined Moho depths beneath some of these features are too shallow for crustal thickening alone. A two-layer Airy compensation model, composed of thickened crust underlain by an anomalously low density "mantle root", is used to explain these observations. The Walvis Ridge, and the Agulhas, Crozet, and north Kerguelen plateaus have geoid/topography ratios and Moho depths that are consistent with the two-layer Airy model. The proximity of the Agulhas Plateau to a RRR triple junction during its early development, and the excessive volcanism at active spreading ridges that created the Crozet and north Kerguelen plateaus and the Walvis Ridge, may have produced regions of enhanced depletion and hence the low-density mantle anomalies. If this explanation is correct, then the low-density mantle anomaly persists over time and remains embedded in the lithosphere beneath the oceanic feature.

Small, C, Sandwell DT.  1992.  An Analysis of Ridge Axis Gravity Roughness and Spreading Rate. Journal of Geophysical Research-Solid Earth. 97:3235-3245.   10.1029/91jb02465   AbstractWebsite

Fast and slow spreading ridges have radically different morphologic and gravimetric characteristics. In this study, altimeter measurements from the Geosat Exact Repeat Mission (Geosat ERM) are used to investigate spreading rate dependence of the ridge axis gravity field. Gravity roughness provides an estimate of the amplitude of the gravity anomaly and is robust to small errors in the location of the ridge axis. We compute gravity roughness as a weighted root mean square (RMS) of the vertical deflection at 438 ridge crossings on the mid-ocean ridge system. Ridge axis gravity anomalies show a decrease in amplitude with increasing spreading rate up to an intermediate rate of approximately 60-80 mm/yr and almost no change at higher rates; overall the roughness decreases by a factor of 10 between the lowest and highest rates. In addition to the amplitude decrease, the range of roughness values observed at a given spreading rate shows a similar order of magnitude decrease with transition between 60 and 80 mm/yr. The transition of ridge axis gravity is most apparent at three relatively unexplored locations on the Southeast Indian Ridge and the Pacific-Antarctic Rise; on these intermediate rate ridges the transition occurs abruptly across transform faults.

Lyons, SN, Bock Y, Sandwell DT.  2002.  Creep along the imperial fault, southern California, from GPS measurements. Journal of Geophysical Research-Solid Earth. 107   10.1029/2001jb000763   AbstractWebsite

[1] In May of 1999 and 2000, we surveyed with Global Positioning System (GPS) 46 geodetic monuments established by Imperial College, London, in a dense grid (half-mile spacing) along the Imperial Fault, with three additional National Geodetic Survey sites serving as base stations. These stations were previously surveyed in 1991 and 1993. The Imperial College sites were surveyed in rapid-static mode (15-20 min occupations), while the NGS sites continuously received data for 10 h d(-1). Site locations were calculated using the method of instantaneous positioning, and velocities were determined relative to one of the NGS base stations. Combining our results with far-field velocities from the Southern California Earthquake Center (SCEC), we fit the data to a simple elastic dislocation model with 35 mm yr(-1) of right-lateral slip below 10 km and 9 mm yr(-1) of creep from the surface down to 3 km. The velocity field is asymmetrical across the fault and could indicate a dipping fault plane to the northeast or a viscosity contrast across the fault.

Lyons, S, Sandwell D.  2003.  Fault creep along the southern San Andreas from interferometric synthetic aperture radar, permanent scatterers, and stacking. Journal of Geophysical Research-Solid Earth. 108   10.1029/2002jb001831   AbstractWebsite

[1] Interferometric synthetic aperture radar (InSAR) provides a practical means of mapping creep along major strike-slip faults. The small amplitude of the creep signal (<10 mm/yr), combined with its short wavelength, makes it difficult to extract from long time span interferograms, especially in agricultural or heavily vegetated areas. We utilize two approaches to extract the fault creep signal from 37 ERS SAR images along the southern San Andreas Fault. First, amplitude stacking is utilized to identify permanent scatterers, which are then used to weight the interferogram prior to spatial filtering. This weighting improves correlation and also provides a mask for poorly correlated areas. Second, the unwrapped phase is stacked to reduce tropospheric and other short-wavelength noise. This combined processing enables us to recover the near-field (&SIM;200 m) slip signal across the fault due to shallow creep. Displacement maps from 60 interferograms reveal a diffuse secular strain buildup, punctuated by localized interseismic creep of 4-6 mm/yr line of sight (LOS, 12-18 mm/yr horizontal). With the exception of Durmid Hill, this entire segment of the southern San Andreas experienced right-lateral triggered slip of up to 10 cm during the 3.5-year period spanning the 1992 Landers earthquake. The deformation change following the 1999 Hector Mine earthquake was much smaller (<1 cm) and broader than for the Landers event. Profiles across the fault during the interseismic phase show peak-to-trough amplitude ranging from 15 to 25 mm/yr (horizontal component) and the minimum misfit models show a range of creeping/locking depth values that fit the data.