Publications

Export 2 results:
Sort by: Author Title Type [ Year  (Desc)]
2016
Matthews, KJ, Mullner RD, Sandwell DT.  2016.  Oceanic microplate formation records the onset of India-Eurasia collision. Earth and Planetary Science Letters. 433:204-214.   10.1016/j.epsl.2015.10.040   AbstractWebsite

Mapping of seafloor tectonic fabric in the Indian Ocean, using high-resolution satellite-derived vertical gravity gradient data, reveals an extinct Pacific-style oceanic microplate ('Mammerickx Microplate') west of the Ninetyeast Ridge. It is one of the first Pacific-style microplates to be mapped outside the Pacific basin, suggesting that geophysical conditions during formation probably resembled those that have dominated at eastern Pacific ridges. The microplate formed at the Indian-Antarctic ridge and is bordered by an extinct ridge in the north and pseudofault in the south, whose conjugate is located north of the Kerguelen Plateau. Independent microplate rotation is indicated by asymmetric pseudofaults and rotated abyssal hill fabric, also seen in multibeam data. Magnetic anomaly picks and age estimates calculated from published spreading rates suggest formation during chron 21o (similar to 47.3 Ma). Plate reorganizations can trigger ridge propagation and microplate development, and we propose that Mammerickx Microplate formation is linked with the India-Eurasia collision (initial 'soft' collision). The collision altered the stress regime at the Indian-Antarctic ridge, leading to a change in segmentation and ridge propagation from an establishing transform. Fast Indian-Antarctic spreading that preceded microplate formation, and Kerguelen Plume activity, may have facilitated ridge propagation via the production of thin and weak lithosphere; however both factors had been present for tens of millions of years and are therefore unlikely to have triggered the event. Prior to the collision, the combination of fast spreading and plume activity was responsible for the production of a wide region of undulate seafloor to the north of the extinct ridge and 'W' shaped lineations that record back and forth ridge propagation. Microplate formation provides a precise means of dating the onset of the India-Eurasia collision, and is completely independent of and complementary to timing constraints derived from continental geology or convergence histories. (C) 2015 Elsevier B.V. All rights reserved.

1982
Sandwell, DT.  1982.  Thermal isostasy; response of a moving lithosphere to a distributed heat source. Journal of Geophysical Research. 87:1001-1014., Washington, DC, United States (USA): American Geophysical Union, Washington, DC   10.1029/JB087iB02p01001   AbstractWebsite

Spreading ridges and hot spot swells are identified by their high surface heat flow, shallow seafloor, and high geopotential. To understand these and other thermotectonic features, the oceanic lithosphere is modeled as a thermomechanical boundary layer moving through a three-dimensional, time-independent heat source. The heat source mimics the heat advection associated with a spreading ridge or hot spot without introducing the nonlinearities of these flow processes. The Fourier transforms of three Green's functions (response functions), which relate the three observable fields to their common heat source, are determined analytically. Each of these reponse functions is highly anisotropic because the lithosphere is moving with respect to the source. However, the ratio of the gravity response function to the topography response function (i.e., gravity/topography transfer function) is nearly isotropic and has a maximum lying between the flexural wavelength and 2pi times the thickness of the thermal boundary layer. The response functions are most useful for determining the surface heat flow, seafloor topography, and geopotential for complex lithospheric thermal structures. In practice, these three observables are calculated by multiplying the Fourier transform of the heat source by the appropriate response function and inverse transforming the products. Almost any time-independent thermotectonic feature can be modeled using this technique. Included in this report are examples of spreading ridges and thermal swells, although more complex geometries such as ridges offset by transform faults and RRR-type triple junctions can also be modeled. Because forward modeling is both linear and computationally simple, the inverse of this technique could be used to infer some basic characteristics of the heat source directly from the observed fields.