Export 3 results:
Sort by: Author Title Type [ Year  (Desc)]
Xu, XH, Sandwell DT, Bassett D.  2018.  A spectral expansion approach for geodetic slip inversion: implications for the downdip rupture limits of oceanic and continental megathrust earthquakes. Geophysical Journal International. 212:400-411.   10.1093/gji/ggx408   AbstractWebsite

We have developed a data-driven spectral expansion inversion method to place bounds on the downdip rupture depth of large megathrust earthquakes having good InSAR and GPS coverage. This inverse theory approach is used to establish the set of models that are consistent with the observations. In addition, the inverse theory method demonstrates that the spatial resolution of the slip models depends on two factors, the spatial coverage and accuracy of the surface deformation measurements, and the slip depth. Application of this method to the 2010 M-w 8.8 Maule Earthquake shows a slip maximum at 19 km depth tapering to zero at similar to 40 km depth. In contrast, the continent-continent megathrust earthquakes of the Himalayas, for example 2015 M-w 7.8 Gorkha Earthquake, shows a slip maximum at 9 km depth tapering to zero at similar to 18 km depth. The main question is why is the maximum slip depth of the continental megathrust earthquake only 50 per cent of that observed in oceanic megathrust earthquakes. To understand this difference, we have developed a simple 1-D heat conduction model that includes the effects of uplift and surface erosion. The relatively low erosion rates above the ocean megathrust results in a geotherm where the 450-600 degrees C transition is centred at similar to 40 km depth. In contrast, the relatively high average erosion rates in the Himalayas of similar to 1 mm yr-1 results in a geotherm where the 450-600 degrees C transition is centred at similar to 20 km. Based on these new observations and models, we suggest that the effect of erosion rate on temperature explains the difference in the maximum depth of the seismogenic zone between Chile and the Himalayas.

Smith-Konter, BR, Sandwell DT, Shearer P.  2011.  Locking depths estimated from geodesy and seismology along the San Andreas Fault System: Implications for seismic moment release. Journal of Geophysical Research-Solid Earth. 116   10.1029/2010jb008117   AbstractWebsite

The depth of the seismogenic zone is a critical parameter for earthquake hazard models. Independent observations from seismology and geodesy can provide insight into the depths of faulting, but these depths do not always agree. Here we inspect variations in fault depths of 12 segments of the southern San Andreas Fault System derived from over 1000 GPS velocities and 66,000 relocated earthquake hypocenters. Geodetically determined locking depths range from 6 to 22 km, while seismogenic thicknesses are largely limited to depths of 11-20 km. These seismogenic depths best match the geodetic locking depths when estimated at the 95% cutoff depth in seismicity, and most fault segment depths agree to within 2 km. However, the Imperial, Coyote Creek, and Borrego segments have significant discrepancies. In these cases the geodetically inferred locking depths are much shallower than the seismogenic depths. We also examine variations in seismic moment accumulation rate per unit fault length as suggested by seismicity and geodesy and find that both approaches yield high rates ( 1.5-1.8 x 10(13) Nm/yr/km) along the Mojave and Carrizo segments and low rates (similar to 0.2 x 1013 Nm/yr/km) along several San Jacinto segments. The largest difference in seismic moment between models is calculated for the Imperial segment, where the moment rate from seismic depths is a factor of similar to 2.5 larger than that from geodetic depths. Such variability has important implications for the accuracy to which future major earthquake magnitudes can be estimated.

Tong, XP, Sandwell D, Luttrell K, Brooks B, Bevis M, Shimada M, Foster J, Smalley R, Parra H, Soto JCB, Blanco M, Kendrick E, Genrich J, Caccamise DJ.  2010.  The 2010 Maule, Chile earthquake: Downdip rupture limit revealed by space geodesy. Geophysical Research Letters. 37   10.1029/2010gl045805   AbstractWebsite

Radar interferometry from the ALOS satellite captured the coseismic ground deformation associated with the 2010 Mw 8.8 Maule, Chile earthquake. The ALOS interferograms reveal a sharp transition in fringe pattern at similar to 150 km from the trench axis that is diagnostic of the downdip rupture limit of the Maule earthquake. An elastic dislocation model based on ascending and descending ALOS interferograms and 13 near-field 3-component GPS measurements reveals that the coseismic slip decreases more or less linearly from a maximum of 17 m (along-strike average of 6.5 m) at 18 km depth to near zero at 43-48 km depth, quantitatively indicating the downdip limit of the seismogenic zone. The depth at which slip drops to near zero appears to be at the intersection of the subducting plate with the continental Moho. Our model also suggests that the depth where coseismic slip vanishes is nearly uniform along the strike direction for a rupture length of similar to 600 km. The average coseismic slip vector and the interseismic velocity vector are not parallel, which can be interpreted as a deficit in strike-slip moment release. Citation: Tong, X., et al. (2010), The 2010 Maule, Chile earthquake: Downdip rupture limit revealed by space geodesy, Geophys. Res. Lett., 37, L24311, doi:10.1029/2010GL045805.