Publications

Export 5 results:
Sort by: Author Title Type [ Year  (Desc)]
2016
Howell, S, Smith-Konter B, Frazer N, Tong XP, Sandwell D.  2016.  The vertical fingerprint of earthquake cycle loading in southern California. Nature Geoscience. 9:611-+.   10.1038/ngeo2741   AbstractWebsite

The San Andreas Fault System, one of the best-studied transform plate boundaries on Earth, is well known for its complex network of locked faults that slowly deform the crust in response to large-scale plate motions(1-8). Horizontal interseismic motions of the fault system are largely predictable, but vertical motions arising from tectonic sources remain enigmatic. Here we show that when carefully treated for spatial consistency, global positioning system-derived vertical velocities expose a small-amplitude (+/- 2mmyr(-1)), but spatially considerable (200 km), coherent pattern of uplift and subsidence straddling the fault system in southern California. We employ the statistical method of model selection to isolate this vertical velocity field fromnon-tectonic signals that induce velocity variations in both magnitude and direction across small distances (less than tens of kilometres; ref. 9), and find remarkable agreement with the sense of vertical motions predicted by physical earthquake cycle models spanning the past few centuries(6,10). We suggest that these motions reveal the subtle, but identifiable, tectonic fingerprint of far-field flexure due to more than 300 years of fault locking and creeping depth variability. Understanding this critical component of interseismic deformation at a complex strike-slip plate boundary will better constrain regional mechanics and crustal rheology, improving the quantification of seismic hazards in southern California and beyond.

Matthews, KJ, Mullner RD, Sandwell DT.  2016.  Oceanic microplate formation records the onset of India-Eurasia collision. Earth and Planetary Science Letters. 433:204-214.   10.1016/j.epsl.2015.10.040   AbstractWebsite

Mapping of seafloor tectonic fabric in the Indian Ocean, using high-resolution satellite-derived vertical gravity gradient data, reveals an extinct Pacific-style oceanic microplate ('Mammerickx Microplate') west of the Ninetyeast Ridge. It is one of the first Pacific-style microplates to be mapped outside the Pacific basin, suggesting that geophysical conditions during formation probably resembled those that have dominated at eastern Pacific ridges. The microplate formed at the Indian-Antarctic ridge and is bordered by an extinct ridge in the north and pseudofault in the south, whose conjugate is located north of the Kerguelen Plateau. Independent microplate rotation is indicated by asymmetric pseudofaults and rotated abyssal hill fabric, also seen in multibeam data. Magnetic anomaly picks and age estimates calculated from published spreading rates suggest formation during chron 21o (similar to 47.3 Ma). Plate reorganizations can trigger ridge propagation and microplate development, and we propose that Mammerickx Microplate formation is linked with the India-Eurasia collision (initial 'soft' collision). The collision altered the stress regime at the Indian-Antarctic ridge, leading to a change in segmentation and ridge propagation from an establishing transform. Fast Indian-Antarctic spreading that preceded microplate formation, and Kerguelen Plume activity, may have facilitated ridge propagation via the production of thin and weak lithosphere; however both factors had been present for tens of millions of years and are therefore unlikely to have triggered the event. Prior to the collision, the combination of fast spreading and plume activity was responsible for the production of a wide region of undulate seafloor to the north of the extinct ridge and 'W' shaped lineations that record back and forth ridge propagation. Microplate formation provides a precise means of dating the onset of the India-Eurasia collision, and is completely independent of and complementary to timing constraints derived from continental geology or convergence histories. (C) 2015 Elsevier B.V. All rights reserved.

2014
Smith-Konter, BR, Thornton GM, Sandwell DT.  2014.  Vertical crustal displacement due to interseismic deformation along the San Andreas fault: Constraints from tide gauges. Geophysical Research Letters. 41:3793-3801.   10.1002/2014gl060091   AbstractWebsite

Interseismic motion along complex strike-slip fault systems such as the San Andreas Fault System (SAFS) can produce vertical velocities that are similar to 10 times smaller than horizontal velocities, caused by along-strike variations in fault orientation and locking depth. Tide gauge stations provide a long (50-100 year) recording history of sea level change due to several oceanographic and geologic processes, including vertical earthquake cycle deformation. Here we compare relative sea level displacements with predictions from a 3-D elastic/viscoelastic earthquake cycle model of the SAFS. We find that models with lithospheric structure reflecting a thick elastic plate (> 50km) and moderate viscosities produce vertical motions in surprisingly good agreement with the relative tide gauge uplift rates. These results suggest that sea level variations along the California coastline contain a small but identifiable tectonic signal reflecting the flexure of the elastic plate caused by bending moments applied at the ends of locked faults.

2004
Sandwell, D, Fialko Y.  2004.  Warping and cracking of the Pacific plate by thermal contraction. Journal of Geophysical Research-Solid Earth. 109   10.1029/2004jb003091   AbstractWebsite

Lineaments in the gravity field and associated chains of volcanic ridges are widespread on the Pacific plate but are not yet explained by plate tectonics. Recent studies have proposed that they are warps and cracks in the plate caused by uneven thermal contraction of the cooling lithosphere. We show that the large thermoelastic stress produced by top-down cooling is optimally released by lithospheric flexure between regularly spaced parallel cracks. Both the crack spacing and approximate gravity amplitude are predicted by elastic plate theory and variational principle. Cracks along the troughs of the gravity lineaments provide conduits for the generation of volcanic ridges in agreement with new observations from satellite-derived gravity. Our model suggests that gravity lineaments are a natural consequence of lithospheric cooling so that convective rolls or mantle plumes are not required.

1991
Marks, KM, Sandwell DT.  1991.  Analysis of Geoid Height Versus Topography for Oceanic Plateaus and Swells Using Nonbiased Linear-Regression. Journal of Geophysical Research-Solid Earth and Planets. 96:8045-8055.   10.1029/91jb00240   AbstractWebsite

We have investigated the relationship between geoid height and topography for 53 oceanic plateaus and swells to determine the mode of compensation. The ratio of geoid height to topography was obtained from the slope of a best line fit by functional analysis (i.e. nonbiased linear regression), a method that minimizes both geoid height and topography residuals. This method is more appropriate than traditional least squares analysis that minimizes only geoid height residuals, because uncertainties are present in both data types. We find that approximately half of the oceanic and continental plateaus analyzed have low ratios that are consistent with Airy-compensated crustal thickening. The remaining plateaus, however, have higher geoid/topography ratios than predicted by the simple Airy model, and the seismically determined Moho depths beneath some of these features are too shallow for crustal thickening alone. A two-layer Airy compensation model, composed of thickened crust underlain by an anomalously low density "mantle root", is used to explain these observations. The Walvis Ridge, and the Agulhas, Crozet, and north Kerguelen plateaus have geoid/topography ratios and Moho depths that are consistent with the two-layer Airy model. The proximity of the Agulhas Plateau to a RRR triple junction during its early development, and the excessive volcanism at active spreading ridges that created the Crozet and north Kerguelen plateaus and the Walvis Ridge, may have produced regions of enhanced depletion and hence the low-density mantle anomalies. If this explanation is correct, then the low-density mantle anomaly persists over time and remains embedded in the lithosphere beneath the oceanic feature.