Export 4 results:
Sort by: Author Title Type [ Year  (Desc)]
Howell, S, Smith-Konter B, Frazer N, Tong XP, Sandwell D.  2016.  The vertical fingerprint of earthquake cycle loading in southern California. Nature Geoscience. 9:611-+.   10.1038/ngeo2741   AbstractWebsite

The San Andreas Fault System, one of the best-studied transform plate boundaries on Earth, is well known for its complex network of locked faults that slowly deform the crust in response to large-scale plate motions(1-8). Horizontal interseismic motions of the fault system are largely predictable, but vertical motions arising from tectonic sources remain enigmatic. Here we show that when carefully treated for spatial consistency, global positioning system-derived vertical velocities expose a small-amplitude (+/- 2mmyr(-1)), but spatially considerable (200 km), coherent pattern of uplift and subsidence straddling the fault system in southern California. We employ the statistical method of model selection to isolate this vertical velocity field fromnon-tectonic signals that induce velocity variations in both magnitude and direction across small distances (less than tens of kilometres; ref. 9), and find remarkable agreement with the sense of vertical motions predicted by physical earthquake cycle models spanning the past few centuries(6,10). We suggest that these motions reveal the subtle, but identifiable, tectonic fingerprint of far-field flexure due to more than 300 years of fault locking and creeping depth variability. Understanding this critical component of interseismic deformation at a complex strike-slip plate boundary will better constrain regional mechanics and crustal rheology, improving the quantification of seismic hazards in southern California and beyond.

Smith-Konter, BR, Thornton GM, Sandwell DT.  2014.  Vertical crustal displacement due to interseismic deformation along the San Andreas fault: Constraints from tide gauges. Geophysical Research Letters. 41:3793-3801.   10.1002/2014gl060091   AbstractWebsite

Interseismic motion along complex strike-slip fault systems such as the San Andreas Fault System (SAFS) can produce vertical velocities that are similar to 10 times smaller than horizontal velocities, caused by along-strike variations in fault orientation and locking depth. Tide gauge stations provide a long (50-100 year) recording history of sea level change due to several oceanographic and geologic processes, including vertical earthquake cycle deformation. Here we compare relative sea level displacements with predictions from a 3-D elastic/viscoelastic earthquake cycle model of the SAFS. We find that models with lithospheric structure reflecting a thick elastic plate (> 50km) and moderate viscosities produce vertical motions in surprisingly good agreement with the relative tide gauge uplift rates. These results suggest that sea level variations along the California coastline contain a small but identifiable tectonic signal reflecting the flexure of the elastic plate caused by bending moments applied at the ends of locked faults.

Jacobs, A, Sandwell D, Fialko Y, Sichoix L.  2002.  The 1999 (M-w 7. 1) Hector Mine, California, earthquake: Near-field postseismic deformation from ERS interferometry. Bulletin of the Seismological Society of America. 92:1433-1442.   10.1785/0120000908   AbstractWebsite

Interferometric synthetic aperture radar (InSAR) data over the area of the Hector Mine earthquake (M-w 7.1, 16 October 1999) reveal postseismic deformation of several centimeters over a spatial scale of 0.5 to 50 km. We analyzed seven SAR acquisitions to form interferograms over four time periods after the event. The main deformations seen in the line-of-sight (LOS) displacement maps are a region of subsidence (60 mm LOS increase) on the northern end of the fault, a region of uplift (45 mm LOS decrease) located to the northeast of the primary fault bend, and a linear trough running along the main rupture having a depth of up to 15 mm and a width of about 2 km. We correlate these features with a double left-bending, right-lateral, strike-slip fault that exhibits contraction on the restraining side and extension along the releasing side of the fault bends. The temporal variations in the near-fault postseismic deformation are consistent with a characteristic time scale of 135 + 42 or - 25 days, which is similar to the relaxation times following the 1992 Landers earthquake. High gradients in the LOS displacements occur on the fault trace, consistent with afterslip on the earthquake rupture. We derive an afterslip model by inverting the LOS data from both the ascending and descending orbits. Our model indicates that much of the afterslip occurs at depths of less than 3 to 4 km.

Sandwell, DT, Schubert G.  1992.  Flexural Ridges, Trenches, and Outer Rises around Coronae on Venus. Journal of Geophysical Research-Planets. 97:16069-16083.   10.1029/92JE01274   AbstractWebsite

High-resolution altimetry collected by the Magellan spacecraft reveals trench and outer rise topographic signatures around major coronae (e.g. Eithinoha, Heng-0, Artemis, and Latona). In addition, Magellan synthetic aperature radar images show circumferential fractures in areas where the plates are curved downward. Both observations suggest that the lithosphere around coronae is flexed downward by the weight of the overriding coronal rim or by the negative buoyancy of subducted lithosphere. We have modelled the trench and outer rise topography as a thin elastic plate subjected to a line load and bending moment beneath die corona rim. The approach was tested at northern Freyja Montes where the best fit elastic thickness is 18 km, in agreement with previously published results. The elastic thicknesses determined by modelling numerous profiles at Eithinoha, Heng-0, Artemis, and Latona are 15, 40, 37, and 35 km, respectively. At Eithinoha, Artemis, and Latona where the plates appear to be yielding, the maximum bending moments and elastic thicknesses are similar to those found at the Middle America, Mariana, and Aleutian trenches on Earth, respectively. Estimates of effective elastic thickness and plate curvature are used with a yield strength envelope model of the lithosphere to estimate lithospheric temperature gradients. At Heng-0, Artemis, and Latona, temperature gradients are less than 10 K/km, which correspond to conductive heat losses of less than one half the expected average planetary value. We propose two scenarios for the creation of the ridge, trench, and outer rise topography: differential thermal subsidence and lithospheric subduction. The topography of Heng-0 is well matched by the differential thermal subsidence model. However, at Artemis and Latona the amplitudes of the trench and outer rise signatures are a factor of 5 too large to be explained by thermal subsidence alone. In these cases we favor the lithospheric subduction model wherein the lithosphere outboard of the corona perimeter subducts (rolls back) and the corona diameter increase.