Publications

Export 2 results:
Sort by: Author Title Type [ Year  (Desc)]
2014
Lindsey, EO, Fialko Y, Bock Y, Sandwell DT, Bilham R.  2014.  Localized and distributed creep along the southern San Andreas Fault. Journal of Geophysical Research-Solid Earth. 119:7909-7922.   10.1002/2014jb011275   AbstractWebsite

We investigate the spatial pattern of surface creep and off-fault deformation along the southern segment of the San Andreas Fault using a combination of multiple interferometric synthetic aperture radar viewing geometries and survey-mode GPS occupations of a dense array crossing the fault. Radar observations from Envisat during the period 2003-2010 were used to separate the pattern of horizontal and vertical motion, providing a high-resolution image of uplift and shallow creep along the fault trace. The data reveal pervasive shallow creep along the southernmost 50 km of the fault. Creep is localized on a well-defined fault trace only in the Mecca Hills and Durmid Hill areas, while elsewhere creep appears to be distributed over a 1-2 km wide zone surrounding the fault. The degree of strain localization is correlated with variations in the local fault strike. Using a two-dimensional boundary element model, we show that stresses resulting from slip on a curved fault can promote or inhibit inelastic failure within the fault zone in a pattern matching the observations. The occurrence of shallow, localized interseismic fault creep within mature fault zones may thus be partly controlled by the local fault geometry and normal stress, with implications for models of fault zone evolution, shallow coseismic slip deficit, and geologic estimates of long-term slip rates. Key PointsShallow creep is pervasive along the southernmost 50 km of the San Andreas FaultCreep is localized only along transpressional fault segmentsIn transtensional areas, creep is distributed over a 1-2 km wide fault zone

2003
Lyons, S, Sandwell D.  2003.  Fault creep along the southern San Andreas from interferometric synthetic aperture radar, permanent scatterers, and stacking. Journal of Geophysical Research-Solid Earth. 108   10.1029/2002jb001831   AbstractWebsite

[1] Interferometric synthetic aperture radar (InSAR) provides a practical means of mapping creep along major strike-slip faults. The small amplitude of the creep signal (<10 mm/yr), combined with its short wavelength, makes it difficult to extract from long time span interferograms, especially in agricultural or heavily vegetated areas. We utilize two approaches to extract the fault creep signal from 37 ERS SAR images along the southern San Andreas Fault. First, amplitude stacking is utilized to identify permanent scatterers, which are then used to weight the interferogram prior to spatial filtering. This weighting improves correlation and also provides a mask for poorly correlated areas. Second, the unwrapped phase is stacked to reduce tropospheric and other short-wavelength noise. This combined processing enables us to recover the near-field (&SIM;200 m) slip signal across the fault due to shallow creep. Displacement maps from 60 interferograms reveal a diffuse secular strain buildup, punctuated by localized interseismic creep of 4-6 mm/yr line of sight (LOS, 12-18 mm/yr horizontal). With the exception of Durmid Hill, this entire segment of the southern San Andreas experienced right-lateral triggered slip of up to 10 cm during the 3.5-year period spanning the 1992 Landers earthquake. The deformation change following the 1999 Hector Mine earthquake was much smaller (<1 cm) and broader than for the Landers event. Profiles across the fault during the interseismic phase show peak-to-trough amplitude ranging from 15 to 25 mm/yr (horizontal component) and the minimum misfit models show a range of creeping/locking depth values that fit the data.