Publications

Export 5 results:
Sort by: Author [ Title  (Desc)] Type Year
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z   [Show ALL]
S
Yale, MM, Sandwell DT.  1999.  Stacked global satellite gravity profiles. Geophysics. 64:1748-1755.   10.1190/1.1444680   AbstractWebsite

Gravity field recovery from satellite altimetry provides global marine coverage but lacks the accuracy and resolution needed for many exploration geophysics studies. The repeating ground tracks of the ERS-1/2, Geosat, and Topex/Poseidon altimeters offer the possibility of improving the accuracy and resolution of gravity anomalies along widely spaced (similar to 40-km spacing) tracks. However, complete ocean coverage is usually needed to convert the sea-surface height (br along-track slope) measurements into gravity anomalies. Here we develop and test a method for constructing stacked gravity profiles by using a published global gravity grid (Sandwell and Smith, 1997), V7.2, as a reference model for the slope-to-gravity anomaly conversion. The method is applied to stacks (averages) of Geosat/ERM (up to 62 cycles), ERS-1/2 (up to 43 cycles), and Topex (up to 142 cycles) satellite altimeter profiles. We assess the accuracies of the ERS-1/2 profiles through a comparison with a gravity model of the northern Gulf of Mexico (profiles provided by EDCON Inc.). The 40 ERS profiles evaluated have a mean rms difference of 3.77 mGal and full wavelength resolution (0.5 coherence) of 24 km. Our processing retains wavelengths as short as 10 km so smaller, large-amplitude features can be resolved, especially in shallow ocean areas (<1000 m deep). We provide an example of combining these higher resolution profiles with lower resolution gravity data in the Caspian Sea.

R
Zhang, SJ, Sandwell DT.  2017.  Retracking of SARAL/AltiKa Radar Altimetry Waveforms for Optimal Gravity Field Recovery. Marine Geodesy. 40:40-56.   10.1080/01490419.2016.1265032   AbstractWebsite

The accuracy of the marine gravity field derived from satellite altimetry depends on dense track spacing as well as high range precision. Here, we investigate the range precision that can be achieved using a new shorter wavelength Ka-band altimeter AltiKa aboard the SARAL spacecraft. We agree with a previous study that found that the range precision given in the SARAL/AltiKa Geophysical Data Records is more precise than that of Ku-band altimeter by a factor of two. Moreover, we show that two-pass retracking can further improve the range precision by a factor of 1.7 with respect to the 40 Hz-retracked data (item of range_40 hz) provided in the Geophysical Data Records. The important conclusion is that a dedicated Ka-band altimeter-mapping mission could substantially improve the global accuracy of the marine gravity field with complete coverage and a track spacing of <6 km achievable in similar to 1.3 years. This would reveal thousands of uncharted seamounts on the ocean floor as well as important tectonic features such as microplates and abyssal hill fabric.

Garcia, ES, Sandwell DT, Smith WHF.  2014.  Retracking CryoSat-2, Envisat and Jason-1 radar altimetry waveforms for improved gravity field recovery. Geophysical Journal International. 196:1402-1422.   10.1093/gji/ggt469   AbstractWebsite

Improving the accuracy of the marine gravity field requires both improved altimeter range precision and dense track coverage. After a hiatus of more than 15 yr, a wealth of suitable data is now available from the CryoSat-2, Envisat and Jason-1 satellites. The range precision of these data is significantly improved with respect to the conventional techniques used in operational oceanography by retracking the altimeter waveforms using an algorithm that is optimized for the recovery of the short-wavelength geodetic signal. We caution that this new approach, which provides optimal range precision, may introduce large-scale errors that would be unacceptable for other applications. In addition, CryoSat-2 has a new synthetic aperture radar (SAR) mode that should result in higher range precision. For this new mode we derived a simple, but approximate, analytic model for the shape of the SAR waveform that could be used in an iterative least-squares algorithm for estimating range. For the conventional waveforms, we demonstrate that a two-step retracking algorithm that was originally designed for data from prior missions (ERS-1 and Geosat) also improves precision on all three of the new satellites by about a factor of 1.5. The improved range precision and dense coverage from CryoSat-2, Envisat and Jason-1 should lead to a significant increase in the accuracy of the marine gravity field.

P
Sandwell, DT, Price EJ.  1998.  Phase gradient approach to stacking interferograms. Journal of Geophysical Research-Solid Earth. 103:30183-30204.   10.1029/1998jb900008   AbstractWebsite

The phase gradient approach is used to construct averages and differences of interferograms without phase unwrapping. Our objectives for change detection are to increase fringe clarity and decrease errors due to tropospheric and ionospheric delay by averaging many interferograms. The standard approach requires phase unwrapping, scaling the phase according to the ratio of the perpendicular baseline, and finally forming the average or difference; however, unique phase unwrapping is usually not possible. Since the phase gradient due to topography is proportional to the perpendicular baseline, phase unwrapping is unnecessary prior to averaging or differencing. Phase unwrapping may be needed to interpret the results, but it is delayed until all of the largest topographic signals are removed. We demonstrate the method by averaging and differencing six interferograms having a suite of perpendicular baselines ranging from 18 to 406 m. Cross-spectral analysis of the difference between two Tandem interferograms provides estimates of spatial resolution, which are used to design prestack filters. A wide range of perpendicular baselines provides the best topographic recovery in terms of accuracy and coverage. Outside of mountainous areas the topography has a relative accuracy of better than 2 m. Residual interferograms (single interferogram minus stack) have tilts across the unwrapped phase that are typically 50 mm in both range and azimuth, reflecting both orbit error and atmospheric delay. Smaller-scale waves with amplitudes of 15 mm are interpreted as atmospheric lee waves. A few Global Positioning System (GPS) control points within a Game could increase the precision to similar to 20 mm for a single interferogram; further improvements may be achieved by stacking residual interferograms.

I
Zhang, SJ, Sandwell DT, Jin TY, Li DW.  2017.  Inversion of marine gravity anomalies over southeastern China seas from multi-satellite altimeter vertical deflections. Journal of Applied Geophysics. 137:128-137.   10.1016/j.jappgeo.2016.12.014   AbstractWebsite

The accuracy and resolution of marine gravity field derived from satellite altimetry mainly depends on the range precision and dense spatial distribution. This paper aims at modeling a regional marine gravity field with improved accuracy and higher resolution (1' x V') over Southeastern China Seas using additional data from CryoSat-2 as well as new data from AltiKa. Three approaches are used to enhance the precision level of satellite-derived gravity anomalies. Firstly we evaluate a suite of published retracking algorithms and find the two-step retracker is optimal for open ocean waveforms. Secondly, we evaluate the filtering and resampling procedure used to reduce the full 20 or 40 Hz data to a lower rate having lower noise. We adopt a uniform low-pass filter for all altimeter missions and resample at 5 Hz and then perform a second editing based on sea surface slope estimates from previous models. Thirdly, we selected WHU12 model to update the corrections provided in geophysical data record. We finally calculated the 1' x 1' marine gravity field model by using EGM2008 model as reference field during the remove/restore procedure. The root mean squares of the discrepancies between the new result and DTU10, DTU13, V23.1, EGM2008 are within the range of 1.8-3.9 mGal, while the verification with respect to shipboard gravity data shows that the accuracy of the new result reached a comparable level with DTU13 and was slightly superior to V23.1, DTU10 and EGM2008 models. Moreover, the new result has a 2 mGal better accuracy over open seas than coastal areas with shallow water depth. (C) 2016 Elsevier B.V. All rights reserved.