Publications

Export 31 results:
Sort by: Author [ Title  (Asc)] Type Year
A B C D E F G H I J K L M N O P Q R S T U V [W] X Y Z   [Show ALL]
A
Sandwell, DT, Lawver LA, Dalziel IWD, Smith WHF, Wiederspahn M.  1992.  ANTARCTICA Gravity Anomaly and Infrared Satellite Image, USGS MAP 1-2284. : U.S. Geol. Survey Abstract
n/a
C
Baer, G, Sandwell D, Williams S, Bock Y, Shamir G.  1999.  Coseismic deformation associated with the November 1995, M-w=7.1 Nuweiba earthquake, Gulf of Elat (Aqaba), detected by synthetic aperture radar interferometry. Journal of Geophysical Research-Solid Earth. 104:25221-25232.   10.1029/1999jb900216   AbstractWebsite

The November 22, 1995, M-w=7.1 Nuweiba earthquake occurred along one of the left-stepping segments of the Dead Sea Transform in the Gulf of flat (Aqaba). Although it was the largest earthquake along this fault in the last few centuries, little is yet known about the geometry of the rupture, the slip distribution along it, and the nature of postseismic deformation following the main shock. In this study we examine the surface deformation pattern during the coseismic phase of the earthquake in an attempt to better elucidate the earthquake rupture process. As the entire rupture zone was beneath the waters of the Gulf, and there is very little Global Positioning System (GPS) data available in the region for the period spanning the earthquake, interferometric synthetic aperture radar (INSAR) provides the only source of information of surface deformation associated with this earthquake. We chose four synthetic aperture radar (SAR) scenes of about 90x90 km each spanning the rupture area, imaged by the ERS-1 and ERS-2 satellites. The coseismic interferograms show contours of equal satellite-to-ground range changes that correspond to surface displacements due to the earthquake rupture. Interferograms that span the earthquake by 1 week show similar fringe patterns' as those that span the earthquake by 6 months, suggesting that postseismic deformation is minor or confined to the first week after the earthquake. A high displacement gradient is seen on the western side of the Gulf, 20-40 km south of flat and Aqaba, where the total satellite-to-ground range changes are at least 15 cm. The displacement gradient is relatively uniform on the eastern side of the Gulf and the range changes are less than 10 cm. To interpret these results, we compare them to synthetic interferograms generated by elastic dislocation models with a variety of fault parameters. Although selecting the best fit fault parameters is nonunique, we are able to generate a group of simplified model interferograms that provide a reasonable fit to the coseismic interferogram and serve to constrain the location of the fault. The present analysis shows that if the rupture reached the Gulf-bottom surface, the mean sinistral slip along the fault is constrained to about 1.4 m. If surface rupture did not occur, the average sinistral slip is constrained to the range of 1.4-3 m for a fault patch buried 0-4 km below the Gulf-bottom Surface, respectively, with a minor normal component.

Baer, G, Shamir G, Sandwell D, Bock Y.  2001.  Crustal deformation during 6 years spanning the M (sub w) = 7.2 1995 Nuweiba earthquake, analyzed by Interferometric Synthetic Aperture Radar. Israel Journal of Earth-Sciences. 50( Baer G, Wdowinski S, Eds.).:9-22., Jerusalem, Israel (ISR): Laser Pages Publishing, Jerusalem AbstractWebsite

The November 22, 1995, M (sub w) = 7.2 Nuweiba earthquake occurred along one of the left-stepping segments of the Dead Sea Transform in the Gulf of Elat (Aqaba). We examine the surface deformation patterns in the region by Interferometric Synthetic Aperture Radar (InSAR) for the period 1993 to 1999, which includes the end of one seismic cycle and the beginning of the next. Because the main rupture was under water, ERS coverage is limited to distances of approximately 5 km or more away from the rupture. Pre-earthquake interferograms do not show any detectable deformation along the Gulf. Coseismic interferograms show deformation at distances of up to 50 km from the main rupture, with the highest fringe rate (strain) NW of the rupture termination. Coseismic phase gradient maps show triggered slip along faults parallel to the main rupture (sinistral or normal with the Gulf side down) along the western shore of the Gulf, and in a belt of extensional faults along the eastern shore, striking at angles of about 30 degrees to the major rupture. Postseismic deformation is observed only in a time window of up to 6 months following the mainshock. It was concentrated in the region of the high coseismic strain, and seems to be related to the M (sub L) <4.5 aftershocks in the respective time window.

D
Wei, M, Sandwell DT.  2010.  Decorrelation of L-Band and C-Band Interferometry Over Vegetated Areas in California. IEEE Transactions on Geoscience and Remote Sensing. 48:2942-2952.   10.1109/tgrs.2010.2043442   AbstractWebsite

Temporal decorrelation is one of the main limitations for recovering interseismic deformation along the San Andreas Fault system using interferometric synthetic aperture radar. To assess the improved correlation properties of L-band with respect to C-band, we analyzed L-band Advanced Land Observation Satellite (ALOS) interferograms with a range of temporal and spatial baselines over three vegetated areas in California and compared them with corresponding C-band European Remote Sensing Satellite (ERS) interferograms. Over the highly vegetated Northern California forests in the Coast Range area, ALOS remains remarkably well correlated over a 2-year period, whereas an ERS interferogram with a similar temporal and spatial baseline lost correlation. In Central California near Parkfield, we found a similar pattern in decorrelation behavior, which enabled the recovery of a fault creep and a local uplifting signal at L-band that was not apparent at C-band. In the Imperial Valley in Southern California, both ALOS and ERS have low correlation over farmlands. ALOS has lower correlation over some sandy surfaces than ERS, probably due to low signal-to-noise ratio. In general, L-band interferograms with similar seasonal acquisitions have higher correlation than those with dissimilar season. For both L-and C-band, correlation over vegetated areas decreases with time for intervals less than 1 year and then remains relatively constant at longer time intervals. The decorrelation time for L-band is more than 2 years in the forest in California whereas that for C-band is less than 6 months. Overall, these results suggest that L-band interferograms will reveal near-fault interseismic deformation once sufficient data become available.

O'Connor, JM, Hoernle K, Muller RD, Morgan JP, Butterworth NP, Hau F, Sandwell DT, Jokat W, Wijbrans JR, Stoffers P.  2015.  Deformation-related volcanism in the Pacific Ocean linked to the Hawaiian-Emperor bend. Nature Geoscience. 8:393-397.   10.1038/ngeo2416   AbstractWebsite

Ocean islands, seamounts and volcanic ridges are thought to form above mantle plumes. Yet, this mechanism cannot explain many volcanic features on the Pacific Ocean floor(1) and some might instead be caused by cracks in the oceanic crust linked to the reorganization of plate motions(1-3). A distinctive bend in the Hawaiian-Emperor volcanic chain has been linked to changes in the direction of motion of the Pacific Plate(4,5), movement of the Hawaiian plume(6-8), or a combination of both(9). However, these links are uncertain because there is no independent record that precisely dates tectonic events that affected the Pacific Plate. Here we analyse the geochemical characteristics of lava samples collected from the Musicians Ridges, lines of volcanic seamounts formed close to the Hawaiian-Emperor bend. We find that the geochemical signature of these lavas is unlike typical ocean island basalts and instead resembles mid-ocean ridge basalts. We infer that the seamounts are unrelated to mantle plume activity and instead formed in an extensional setting, due to deformation of the Pacific Plate. Ar-40/Ar-39 dating reveals that the Musicians Ridges formed during two time windows that bracket the time of formation of the Hawaiian-Emperor bend, 53-52 and 48-47 million years ago. We conclude that the Hawaiian-Emperor bend was formed by plate-mantle reorganization, potentially triggered by a series of subduction events at the Pacific Plate margins.

Wdowinski, S, Smith-Konter B, Bock Y, Sandwell D.  2007.  Diffuse interseismic deformation across the Pacific-North America plate boundary. Geology. 35:311-314.   10.1130/g22938a.1   AbstractWebsite

Crustal movements and deformation within the diffuse Pacific-North America (Pa-NA) plate boundary are dominated by the right-lateral motion between the two plates. By using the Pa-NA pole of rotation (PoR) spherical coordinate system, we decompose observed crustal movements into parallel and normal components to the Pa-NA plate motion. We transformed the 840 velocity vectors of the Southern California Earthquake Center (SCEC) 3.0 velocity field into the Pa-NA PoR system in order to characterize the interseismic velocity across the plate boundary. Our results show that despite the very different deformation styles occurring across the San Andreas fault, the fault trace follows the half plate motion contour. Deviation occurs in the southern section, where the half motion contour correlates with the San Jacinto and Imperial fault segments. Our analysis yields interesting asymmetric patterns in both parallel and normal components. The parallel component shows asymmetrical velocity gradients across the San Andreas fault, and the normal component indicates compression southwest of the Big Bend, but not northeastward. The observations are compared with viscoelastic modeling results, which show a similar velocity field. The main disagreements between the observations and the model are in a narrow band along the San Andreas fault and in the Mojave block, suggesting that crustal heterogeneities and additional unmodeled fault segments should be considered in future models.

E
Wei, M, Sandwell D.  2006.  Estimates of heat flow from Cenozoic seafloor using global depth and age data. Tectonophysics. 417:325-335.   10.1016/j.tecto.2006.02.004   AbstractWebsite

The total heat output of the Earth constrains models of mantle and core dynamics. Previously published estimates (42-44 TW) have recently been questioned because the measured conductive heat flow on young oceanic lithosphere is about a factor of 2 less than the expected heat flow based on half-space cooling models. Taking the conductive ocean heat flow values at face value reduces the global heat flow from 44 to 31 TW, which has major implications for geodynamics and Earth history. To help resolve this issue, we develop a new method of estimating total oceanic heat flow from depth and age data. The overall elevation of the global ridge system, relative to the deep ocean basins, provides an independent estimate of the total heat content of the lithosphere. Heat flow is proportional to the measured subsidence rate times the heat capacity divided by the thermal expansion coefficient. The largest uncertainty in this method is due to uncertainties in the thermal expansion coefficient and heat capacity. Scalar subsidence rate is computed from gradients of depth and age grids. The method cannot be applied over very young seafloor (< 3 Ma) where age gradient is discontinuous and the assumption of isostasy is invalid. Between 3 and 66 Ma, the new estimates are in agreement with half-space cooling model. Our rnodel-independent estimate of the total heat output of Cenozoic seafloor is 18.6 to 20.5 TW, which leads to a global output of 42 to 44 TW in agreement with previous studies. (c) 2006 Elsevier B.V. All rights reserved.

Sandwell, DT, Winterer EL, Mammerickx J, Duncan RA, Lynch MA, Levitt DA, Johnson CL.  1995.  Evidence for Diffuse Extension of the Pacific Plate from Pukapuka Ridges and Cross-Grain Gravity Lineations. Journal of Geophysical Research-Solid Earth. 100:15087-15099.   10.1029/95jb00156   AbstractWebsite

Satellite altimeter measurements of marine gravity reveal 100 to 200-km wavelength lineations over a wide area of the Pacific plate oriented roughly in the direction of absolute plate motion. At least three mechanisms have been proposed for their origin: small-scale convective rolls aligned in the direction of absolute plate motion by shear in the asthenosphere; diffuse N-S extension of the lithosphere resulting in lineated zones of extension (boudins); and minihotspots that move slowly with respect to major hotspots and produce intermittent volcanism. Recently, several chains of linear volcanic ridges have been found to be associated with the gravity lineations. Following ridgelike gravity signatures apparent in high-resolution Geosat gravity measurements, we surveyed a series of volcanic ridges that extend northwest from the East Pacific Rise flank for 2600 km onto 40 Ma seafloor. Our survey data, as well as radiometric dates on samples we collected from the ridges, provide tight constraints on their origin: (1) Individual ridge segments and sets of ridges are highly elongate in the direction of present absolute plate motion. (2) The ridges formed along a band 50 to 70-km-wide in the trough of one of the more prominent gravity lineations. (3) Radiometric dates of the largest ridges show no hotspot age progression. Moreover, the directions predicted for minihotspot traces older than 24 Ma do not match observed directions of either the gravity lineations or the ridges. Based on this last observation, we reject the minihotspot model. The occurrence of the ridges in the trough of the gravity lineation is incompatible with the small-scale convection model which would predict increased volcanism above the convective upwelling. We favor the diffuse extension model because it is consistent with the occurrence of ridges in the trough above the more highly extended lithosphere. However, the multibeam data show no evidence for widespread normal faulting of the crust as predicted by the model. Perhaps the fault scarps are buried under more than 30 m of sediments and/or covered by the elongated ridges. Finally, we note that if ridge-push force is much smaller than trench-pull force, then near the ridge axis the direction of maximum tensile stress must be perpendicular to the direction of absolute plate motion.

Winterer, EL, Sandwell DT.  1987.  Evidence from EN-Echelon Cross-Grain Ridges for Tensional Cracks in the Pacific Plate. Nature. 329:534-537.   10.1038/329534a0   AbstractWebsite

Sea-floor topography in the Pacific is mainly aligned with original spreading directions1, but is overprinted by alignments created by mid-plate processes. Spreading produces abyssal hills and fracture zones, and mid-plate volcanism generates seamounts, isolated or in chains. A different category of topography, the 'Cross-grain', discovered in geoid-height data collected by the Seasat radar altimeter2, comprises linear troughs and swells spaced ~200 km apart, oblique to fracture zones and abyssal hills but parallel to the Hawaiian chain. Three models have been proposed for the Cross-grain: small-scale convection, organized into longitudinal rolls by the shear of the Pacific Plate2; compressive buckling3; and lithospheric boudinage resulting from plate-wide tensile stresses4,5. None of the previously available data ruled out any of these models. Here we report multi-beam bathymetric data revealing long, narrow en-echelon ridges along the Cross-grain, interpreted as evidence of tension cracks in the Pacific plate.

G
Becker, JJ, Sandwell DT, Smith WHF, Braud J, Binder B, Depner J, Fabre D, Factor J, Ingalls S, Kim SH, Ladner R, Marks K, Nelson S, Pharaoh A, Trimmer R, Von Rosenberg J, Wallace G, Weatherall P.  2009.  Global Bathymetry and Elevation Data at 30 Arc Seconds Resolution: SRTM30_PLUS. Marine Geodesy. 32:355-371.   10.1080/01490410903297766   AbstractWebsite

A new 30-arc second resolution global topography/bathymetry grid (SRTM30_PLUS) has been developed from a wide variety of data sources. Land and ice topography comes from the SRTM30 and ICESat topography, respectively. Ocean bathymetry is based on a new satellite-gravity model where the gravity-to-topography ratio is calibrated using 298 million edited soundings. The main contribution of this study is the compilation and editing of the raw soundings, which come from NOAA, individual scientists, SIO, NGA, JAMSTEC, IFREMER, GEBCO, and NAVOCEANO. The gridded bathymetry is available for ftp download in the same format as the 33 tiles of SRTM30 topography. There are 33 matching tiles of source identification number to convey the provenance of every grid cell. The raw sounding data, converted to a simple common format, are also available for ftp download.

Watts, AB, Sandwell DT, Smith WHF, Wessel P.  2006.  Global gravity, bathymetry, and the distribution of submarine volcanism through space and time. Journal of Geophysical Research-Solid Earth. 111   10.1029/2005jb004083   AbstractWebsite

[ 1] The seafloor is characterized by numerous seamounts and oceanic islands which are mainly volcanic in origin. Relatively few of these features (< similar to 0.1%), however, have been dated, and so little is known about their tectonic setting. One parameter that is sensitive to whether a seamount formed on, near, or far from a mid-ocean ridge is the elastic thickness, T(e), which is a proxy for the long-term strength of the lithosphere. Most previous studies are based on using the bathymetry to calculate the gravity anomaly for different values of T(e) and then comparing the calculated and observed gravity anomaly. The problem with such an approach is that bathymetry data are usually limited to single-beam echo sounder data acquired along a ship track and these data are too sparse to define seamount shape. We therefore use the satellite-derived gravity anomaly to predict the bathymetry for different values of T(e). By comparing the predicted bathymetry to actual shipboard soundings in the vicinity of each locality in the Wessel global seamount database, we have obtained 9758 T(e) estimates from a wide range of submarine volcanic features in the Pacific, Indian, and Atlantic oceans. Comparisons where there are previous estimates show that bathymetric prediction is a robust way to estimate T(e) and its upper and lower bounds. T(e) at sites where there is both a sample and crustal age show considerable scatter, however, and there is no simple relationship between T(e) and age. Nevertheless, we are able to tentatively assign a tectonic setting to each T(e) estimate. The most striking results are in the Pacific Ocean where a broad swath of "on-ridge'' volcanism extends from the Foundation seamounts and Ducie Island/Easter Island ridge in the southeast, across the equator, to the Shatsky and Hess rises in the northwest. Interspersed among the on-ridge volcanism are "flank ridge'' and "off-ridge'' features. The Indian and Atlantic oceans also show a mix of tectonic settings. Off-ridge volcanism dominates in the eastern North Atlantic and northeast Indian oceans, while flank ridge volcanism dominates the northeastern Indian and western south Atlantic oceans. We have been unable to assign the flank ridge and off-ridge estimates an age, but the on-ridge estimates generally reflect, we believe, the age of the underlying oceanic crust. We estimate the volume of on-ridge volcanism to be similar to 1.1 x 10(6) km(3) which implies a mean seamount addition rate of similar to 0.007 km(3) yr(-1). Rates appear to have varied through geological time, reaching their peak during the Late/Early Cretaceous and then declining to the present-day.

Wessel, P, Sandwell DT, Kim SS.  2010.  The Global Seamount Census. Oceanography. 23:24-33. AbstractWebsite

Seamounts are active or extinct undersea volcanoes with heights exceeding similar to 100 m. They represent a small but significant fraction of the volcanic extrusive budget for oceanic seafloor and their distribution gives information about spatial and temporal variations in intraplate volcanic activity. In addition, they sustain important ecological communities, determine habitats for fish, and act as obstacles to Currents, thus enhancing tidal energy dissipation and ocean mixing. Mapping the complete global distribution will help constrain models of seamount formation as well as aid in understanding marine habitats and deep ocean circulation. Two approaches have been used to map the global seamount distribution. Depth soundings from single- and multibeam echosounders can provide the most detailed maps with up to 200-m horizontal resolution. However, soundings from the > 5000 publicly available cruises sample only a small fraction of the ocean floor. Satellite altimetry can detect seamounts taller than similar to 1.5 km, and. studies using altimetry have produced seamount catalogues holding almost 13,000 seamounts. Based on the size-frequency relationship for larger seamounts, we predict over 100,000 seamounts > 1 km in height remain uncharted, and speculatively 25 million > 100 m in height. Future altimetry missions could improve on resolution and significantly decrease noise levels, allowing for an even larger number of intermediate (1-1.5-km height) seamounts to be detected. Recent retracking of the radar altimeter waveforms to improve the accuracy of the gravity field has resulted in a twofold increase in resolution. Thus, improved analyses of existing altimetry with better calibration from multibeam bathymetry could also increase census estimates.

Muller, RD, Qin XD, Sandwell DT, Dutkiewicz A, Williams SE, Flament N, Maus S, Seton M.  2016.  The GPlates Portal: Cloud-based interactive 3D visualization of global geophysical and geological data in a web browser. Plos One. 11   10.1371/journal.pone.0150883   AbstractWebsite

The pace of scientific discovery is being transformed by the availability of 'big data' and open access, open source software tools. These innovations open up new avenues for how scientists communicate and share data and ideas with each other and with the general public. Here, we describe our efforts to bring to life our studies of the Earth system, both at present day and through deep geological time. The GPlates Portal (portal.gplates.org) is a gateway to a series of virtual globes based on the Cesium Javascript library. The portal allows fast interactive visualization of global geophysical and geological data sets, draped over digital terrain models. The globes use WebGL for hardware-accelerated graphics and are cross-platform and cross-browser compatible with complete camera control. The globes include a visualization of a high-resolution global digital elevation model and the vertical gradient of the global gravity field, highlighting small-scale seafloor fabric such as abyssal hills, fracture zones and seamounts in unprecedented detail. The portal also features globes portraying seafloor geology and a global data set of marine magnetic anomaly identifications. The portal is specifically designed to visualize models of the Earth through geological time. These space-time globes include tectonic reconstructions of the Earth's gravity and magnetic fields, and several models of long-wavelength surface dynamic topography through time, including the interactive plotting of vertical motion histories at selected locations. The globes put the on-the-fly visualization of massive data sets at the fingertips of end-users to stimulate teaching and learning and novel avenues of inquiry.

Wagner, CA, Sandwell DT.  1984.  The Gravsat Signal over Tectonic Features. Journal of Geophysical Research. 89:4419-4426.   10.1029/JB089iB06p04419   AbstractWebsite

The range rate between two close gravitational satellites (GRAVSAT) in low earth orbit has been evaluated over model tectonic features such as mountains and ranges, fracture zones, and trenches. Models are locally compensated and consist of both point mass dipoles and sheet mass dipoles. Masses and depths of compensation are chosen to approximate known gravity signatures. The results show that for two satellites at 160 km altitude with 3° separation, significant signal power (>1 μm/s) remains for most extended features at wavelengths less than 200 km. Furthermore, there is strong sensitivity in the signal from these features to lateral and vertical changes of the order of 1 km and less. In addition, the signal of hidden geologic structures such as dikes, salt domes, and ore bodies may also stand above 1 μm/s for this low orbiting pair. Thus, it may prove to be efficient to model the high-frequency GRAVSAT signal directly in terms of the parameters of tectonic-topographic features and their compensation.

I
Sandwell, DT, Wessel P.  2016.  Interpolation of 2-D vector data using constraints from elasticity. Geophysical Research Letters. 43:10703-10709.   10.1002/2016gl070340   AbstractWebsite

We present a method for interpolation of sparse two-dimensional vector data. The method is based on the Green's functions of an elastic body subjected to in-plane forces. This approach ensures elastic coupling between the two components of the interpolation. Users may adjust the coupling by varying Poisson's ratio. Smoothing can be achieved by ignoring the smallest eigenvalues in the matrix solution for the strengths of the unknown body forces. We demonstrate the method using irregularly distributed GPS velocities from southern California. Our technique has been implemented in both the Generic Mapping Tools and MATLAB (R).

K
Koeberl, C, Sharpton VL, Harrison MT, Sandwell D, Murali AV, Burke K.  1990.  The Kara/Ust-Kara twin impact structure; a large-scale impact event in the Late Cretaceous. Special Paper - Geological Society of America. 247( Sharpton VL, Ward PD, Eds.).:233-238., Boulder, CO, United States (USA): Geological Society of America (GSA), Boulder, CO AbstractWebsite
n/a
L
Baer, G, Schattner U, Wachs D, Sandwell D, Wdowinski S, Frydman S.  2002.  The lowest place on Earth is subsiding - An InSAR (interferometric synthetic aperture radar) perspective. Geological Society of America Bulletin. 114:12-23.   10.1130/0016-7606(2002)114<0012:tlpoei>2.0.co;2   AbstractWebsite

Since the early 1990s, sinkholes and wide, shallow subsidence features (WSSFs) have become major problems along the Dead Sea shores in Israel and Jordan. Sinkholes are readily observed in the field, but their locations and timing are unpredictable. WSSFs are often difficult to observe in the field. However, once identified, they delineate zones of instability and increasing hazard. In this study we identify, characterize, and measure rates of subsidence along the Dead Sea shores by the interferometric synthetic aperture radar (InSAR) technique. We analyze 16 SAR scenes acquired during the years 1992 to 1999 by the European Remote Sensing ERS-1 and ERS-2 satellites. The interferograms span periods of between 2 and 71 months. WSSFs are observed in the Lisan Peninsula and along the Dead Sea shores, in a variety of appearances, including circular and elongate coastal depressions (a few hundred meters to a few kilometers in length), depressions in ancient alluvial fans, and depressions along salt-diapir margins. Phase differences measured in our interferograms correspond to subsidence rates generally in the range of 0-20 mm/yr within the studied period, with exceptional high rates that exceed 60 mm/yr in two specific regions. During the study period, the level of the Dead Sea and of the associated ground water has dropped by similar to6 m. This water-level drop within an aquifer overlying fine-grained, marly layers, would be expected to have caused aquifer-system consolidation resulting in gradual subsidence. Comparison of our InSAR observations with calculations of the expected consolidation shows that in areas where marl layers are known to compose part of the upper 30 m of the profile, estimated consolidation settlements are of the order of the measured subsidence. Our observations also show that in certain locations, subsidence appears to be structurally controlled by faults, seaward landslides, and salt domes. Gradual subsidence is unlikely to be directly related to the sinkholes, excluding the use of the WSSFs features as predictable precursors to sinkhole formation.

M
Brooks, BA, Foster J, Sandwell D, Wolfe CJ, Okubo P, Poland M, Myer D.  2008.  Magmatically triggered slow slip at Kilauea volcano, Hawaii. Science. 321:1177-1177.   10.1126/science.1159007   AbstractWebsite

We demonstrate that a recent dike intrusion probably triggered a slow fault-slip event (SSE) on Kilauea volcano's mobile south flank. Our analysis combined models of Advanced Land Observing Satellite interferometric dike-intrusion displacement maps with continuous Global Positioning System (GPS) displacement vectors to show that deformation nearly identical to four previous SSEs at Kilauea occurred at far-field sites shortly after the intrusion. We model stress changes because of both secular deformation and the intrusion and find that both would increase the Coulomb failure stress on possible SSE slip surfaces by roughly the same amount. These results, in concert with the observation that none of the previous SSEs at Kilauea was directly preceded by intrusions but rather occurred during times of normal background deformation, suggest that both extrinsic (intrusion-triggering) and intrinsic (secular fault creep) fault processes can lead to SSEs.

O
Sandwell, D.  2007.  Ocean Bathymetry and Plate Tectonics. Our changing planet : the view from space. ( King MD, Parkinson CL, Partington KC, Williams RG, Eds.).:149-152., Cambridge ; New York: Cambridge University Press Abstract

Examines what orbital imagery tells us about the atmosphere, land, ocean, and polar ice caps of our planet and the ways that it changes naturally, and in response to human activity.

Wei, M, Sandwell D, Smith-Konter B.  2010.  Optimal combination of InSAR and GPS for measuring interseismic crustal deformation. Advances in Space Research. 46:236-249.   10.1016/j.asr.2010.03.013   AbstractWebsite

High spatial resolution measurements of interseismic deformation along major faults are critical for understanding the earthquake cycle and for assessing earthquake hazard. We propose a new remove/filter/restore technique to optimally combine GPS and InSAR data to measure interseismic crustal deformation, considering the spacing of GPS stations in California and the characteristics of interseismic signal and noise using InSAR. To constrain the longer wavelengths (>40 km) we use GPS measurements, combined with a dislocation model, and for the shorter wavelength information we rely on InSAR measurements. Expanding the standard techniques, which use a planar ramp to remove long wavelength error, we use a Gaussian filter technique. Our method has the advantage of increasing the signal-to-noise ratio, controlling the variance of atmosphere error, and being isotropic. Our theoretical analysis indicates this technique can improve the signal-to-noise ratio by up to 20%. We test this method along three segments of the San Andreas Fault (Southern section near Salton Sea, Creeping section near Parkfield and Mojave/Big Bend section near Los Angeles), and find improvements of 26%, 11% and 8% in these areas, respectively. Our data shows a zone of uplift to the west of the Creeping section of the San Andreas Fault and an area of subsidence near the city of Lancaster. This work suggests that after only 5 years of data collection, ALOS interferograms will provide a major improvement in measuring details of interseismic deformation. (C) 2010 COSPAR. Published by Elsevier Ltd. All rights reserved.

P
Sandwell, DT, Anderson D, Wessel P.  2005.  Plates, plumes, and paradigms. Plates, plumes, and paradigms. ( Foulger GR, Natland JH, Presnall DC, Anderson DL, Eds.).:1-10., Boulder, Colo.: Geological Society of America Abstract
n/a
R
S
Sandwell, D, Smith B.  2007.  The San Andreas Fault: Adjustments in the Earth's Crust. Our changing planet : the view from space. ( King MD, Parkinson CL, Partington KC, Williams RG, Eds.).:94-96., Cambridge ; New York: Cambridge University Press Abstract

Examines what orbital imagery tells us about the atmosphere, land, ocean, and polar ice caps of our planet and the ways that it changes naturally, and in response to human activity.

Watson, KM, Bock Y, Sandwell DT.  2002.  Satellite interferometric observations of displacements associated with seasonal groundwater in the Los Angeles basin. Journal of Geophysical Research-Solid Earth. 107   10.1029/2001jb000470   AbstractWebsite

[1] The Newport-Inglewood fault zone (NIFZ) displays interferometric synthetic aperture radar (SAR) phase features along most of its length having amplitudes of up to 60 mm. However, interpretation in terms of right-lateral, shallow slip along the fault fails to match the range of geologic estimates of slip. Recently, Bawden et al. [2001] proposed that these phase features, as well as a broader deformation pattern in the Los Angeles basin, are due to vertical motion related to annual variations in the elevation of the water table. We confirm this hypothesis through the analysis of a longer span of data consisting of 26 SAR images collected by the ERS-1 and ERS-2 spacecraft between June 1992 and June 2000. Moreover, we use continuous GPS measurements from 1995 to the present to establish the amplitude and phase of the vertical deformation. The Los Angeles basin becomes most inflated one quarter of the way through the year, which is consistent with water table measurements as well as with the end of the rainy season when the aquifer should be at a maximum. The spatial pattern of the amplitude of the annual signal derived from continuous GPS measurements is consistent with the shape of the interferometric fringes. GPS sites both near the NIFZ and in a 20 by 40 km zone within the basin also show significant N-S annual variations that may be related to the differential expansion across the fault. Since these horizontal signals have peak-to-trough amplitudes of 6 mm, they mask the smaller tectonic signals and need to be taken into account when interpreting GPS time series of site position. Moreover, since the groundwater signal appears to have a long-term vertical trend which varies in sign depending on location, it will be difficult to distinguish interseismic tectonic slip along the NIFZ and within the affected areas in the basin.

Sandwell, DT, Wessel P.  2010.  Seamount Discovery Tool Aids Navigation to Uncharted Seafloor Features. Oceanography. 23:34-36. AbstractWebsite
n/a