Export 69 results:
Sort by: [ Author  (Asc)] Title Type Year
A B C D E F G H I J K L M N O P Q R [S] T U V W X Y Z   [Show ALL]
Schubert, G, Moore WB, Sandwell DT.  1994.  Gravity over Coronae and Chasmata on Venus. Icarus. 112:130-146.   10.1006/icar.1994.1174   AbstractWebsite

The global spherical harmonic model of Venus' gravity field MGNP60FSAAP, with horizontal resolution of about 600 km, shows that most coronae have little or no signature in the gravity field. Nevertheless, some coronae and some segments of chasmata are associated with distinct positive gravity anomalies. No corona has been found to have a negative gravity anomaly. The spatial coincidence of the gravity highs over four closely spaced 300- to 400-km-diameter coronae in Eastern Eistla Regio with the structures themselves is remarkable and argues for a near-surface or lithospheric origin of the gravity signals over such relatively small features. Apparent depths of compensation (ADCs) of the prominent gravity anomalies at Artemis, Latona, and Heng-o Coronae are about 150 to 200 km. The geoid/topography ratios (GTRs) at Artemis, Latona, and Heng-o Coronae lie in the range 32 to 35 m km(-1). The large ADCs and GTRs of Artemis, Latona, and Heng-o Coronae are consistent with topographically related gravity and a thick Venus lithosphere or shallowly compensated topography and deep positive mass anomalies due to subduction or underthrusting at these coronae. At arcuate segments of Hecate and Parga Chasmata ADCs are about 125 to 150 km, while those at Fatua Corona, four coronae in Eastern Eistla Regio, and an arcuate segment of Western Parga Chasma are about 75 km. The GTRs at Fatua Corona, the four coronae in eastern Eistla Regio, and the arcuate segments of Hecate, Parga, and Western Parga Chasmata are about 12 to 21 m km(-1). The ADCs and GTRs of these coronae and arcuate chasmata segments are generally too large to reflect compensation by crustal thickness variations. Instead, they suggest compensation by thermally induced thickness variations in a moderately thick (approximate to 100 km) lithosphere. Alternatively, the gravity signals at these sites could originate from deep positive mass anomalies due to subduction or underthrusting. Weighted linear least squares fits to GTR vs h (long-wavelength topography) data from Heng-o and Fatua Coronae, the four coronae in eastern Eistla Regio, and the arcuate segments of Hecate, Parga, and western Parga Chasmata are consistent with compensation by thermally induced thickness variations of a dense lithosphere above a less dense mantle; the fits imply an average lithosphere thickness of about 180 km and an excess lithospheric density of about 0.5 to 0.7%. Gravity anomalies at the arcuate segments of Dali and Diana Chasmata that form Latona Corona, at Artemis Chasma, and other arcuate segments of Parga and Hecate Chasmata occur on the concave sides of the arcs. By analogy with gravity anomalies of similar horizontal scale (600 km-several thousand kilometers) on the concave sides of terrestrial subduction zone arcs, which are due in large part to subducted lithosphere, it is inferred that the gravity anomalies on Venus are consistent with retrograde subduction at Artemis Chasma, along the northern and southern margins of Latona Corona, and elsewhere along Parga and Hecate Chasmata. (C) 1994 Academic Press, Inc.

Schubert, G, Sandwell DT.  1995.  A Global Survey of Possible Subduction Sites on Venus. Icarus. 117:173-196.   10.1006/icar.1995.1150   AbstractWebsite

About 10,000 km of trenches in chasmata and coronae have been identified as possible sites of retrograde subduction on Venus. All the sites have narrow deep trenches elongate along strike with arcuate planforms, ridge-trench-outer rise topographic profiles typical of terrestrial subduction zones, large outer rise curvatures >10(-7) m(-1), fractures parallel to the strike of the trench on the outer trench wall and outer rise, and no cross-strike fractures across the trench. Both the northern and southern margins of Latona Corona are possible subduction sites. Identification of a major graben between the two principal outer ridges in southern Latona Corona is evidence of back-are extension in the corona; the amount of extension is estimated to be more than 2-11 km. The moment exerted by the ridges of southern Latona Corona is insufficient to bend the lithosphere into the observed outer rise shape; a negatively buoyant subducted or underthrust slab is needed. Depending on the unknown trench migration rate, lithospheric subduction can make a significant contribution to mantle cooling on Venus. Venusian chasmata could have a dual character. They may be propagating rifts near major volcanic rises, and subduction trenches far from the rises in the lowlands. Subduction and rifting may occur in close proximity on Venus, unlike on Earth. Rifting induced by hotspots on Venus may be necessary to break the lithosphere and allow subduction to occur. Such a process could result in gradual lithospheric subduction or global, episodic overturn of the lithosphere. (C) 1995 Academic Press, Inc.

Schubert, G, Sandwell D.  1989.  Crustal Volumes of the Continents and of Oceanic and Continental Submarine Plateaus. Earth and Planetary Science Letters. 92:234-246.   10.1016/0012-821x(89)90049-6   AbstractWebsite

Global topographic data and the assumption of Airy isostasy have been used to estimate the crustal volumes of the continents and the oceanic and continental submarine plateaus. The calculated crustal volumes are 7182 × 10^6 km^3 for the continents, 242 × 10^6 km^3 for continental submarine plateaus, and 369 × 10^6 km^3 for oceanic plateaus. The Falkland Plateau and the Lord Howe Rise are the two largest continental submarine plateaus with volumes of 48 × 10^6 km^3 and 47 × 10^6 km^3, respectively. Total continental crustal volume is 7581 × 10^6 km^3 (including the volume of continental sediments on the ocean floor 160 × 10^6 km^3), in good agreement with previous estimates. Continental submarine plateaus on the seafloor comprise 3.2% of the total continental crustal volume. The largest oceanic plateaus in order of decreasing size are the Ontong-Java Plateau, the Kerguelen Plateau, the Caribbean, the Chagos Laccadive Ridge, the Ninetyeast Ridge, and the Mid-Pacific Mountains. Together they comprise 54% of the total anomalous crustal volume in oceanic plateaus. An upper bound to the continental crust addition rate by the accretion of oceanic plateaus is 3.7 km^3/yr, a value that assumes accretion of all oceanic plateaus, with a total volume of 4.9% of the continental crustal volume, on a 100 Myr time scale. Even if a substantial fraction of the crustal volume in oceanic plateaus is subducted, accretion of oceanic plateaus could make a contribution to continental growth since the upper bound to the addition rate exceeds recent estimates of the island arc addition rate. Subduction of continental submarine plateaus with the oceanic lithosphere on a 100 Myr time scale gives an upper bound to the continental crustal subtraction rate of 2.4 km^3/yr, much larger than recent estimates of crustal subtraction by subduction of seafloor sediments. Effective subduction of all oceanic plateaus implies equally effective subduction of continental submarine plateaus. A potentially important way to recycle continental crust back into the mantle may be the break off of small fragments from the continents, entrapment of the continental fragments in the seafloor, and subduction of the fragments with the oceanic lithosphere. This process may be occurring in the Mediterranean for Corsica and Sardinia.

Shum, CK, Werner RA, Sandwell DT, Zhang BH, Nerem RS, Tapley BD.  1990.  Variations of Global Mesoscale Eddy Energy Observed from GEOSAT. Journal of Geophysical Research-Oceans. 95:17865-&.   10.1029/JC095iC10p17865   AbstractWebsite

The global distribution of eddy kinetic energy has been synoptically observed from analysis of the Geosat Exact Repeat Mission (ERM) altimeter data collected for a 2-year period from November 1986 through November 1988. Using a technique developed by Sandwell and Zhang (1989), altimeter data from forty-four 17-day repeat cycles (2 years) were processed into sea surface slopes along the satellite ground track, averaged, and filtered to produce a mean sea surface slope profile having an estimated accuracy of 0.2 μrad (2 cm sea level change over 100 km distance). A series of global eddy kinetic energy maps, each averaged over 3 months, and their mean were then generated. The maximum mean eddy kinetic energy per unit mass exceeds 2000 cm^2/s^2 for most of the western boundary currents; however, it only reaches approximately 500 cm^2/s^2 for the Antarctic Circumpolar Current (ACC). More than 65% of the world ocean has relatively low variability with an eddy kinetic energy of less than 300 cm^2/s^2. Results obtained from this study are in general agreement with other Geosat ocean variability studies (e.g., Zlotnicki et al., 1989). However, significantly higher variability is found when compared with either Seasat or ship drift data. Significant seasonal variations were found in the Gulf Stream and Kuroshio currents. The ACC system exhibits no apparent seasonal variation.

Small, C, Sandwell DT.  1992.  An Analysis of Ridge Axis Gravity Roughness and Spreading Rate. Journal of Geophysical Research-Solid Earth. 97:3235-3245.   10.1029/91jb02465   AbstractWebsite

Fast and slow spreading ridges have radically different morphologic and gravimetric characteristics. In this study, altimeter measurements from the Geosat Exact Repeat Mission (Geosat ERM) are used to investigate spreading rate dependence of the ridge axis gravity field. Gravity roughness provides an estimate of the amplitude of the gravity anomaly and is robust to small errors in the location of the ridge axis. We compute gravity roughness as a weighted root mean square (RMS) of the vertical deflection at 438 ridge crossings on the mid-ocean ridge system. Ridge axis gravity anomalies show a decrease in amplitude with increasing spreading rate up to an intermediate rate of approximately 60-80 mm/yr and almost no change at higher rates; overall the roughness decreases by a factor of 10 between the lowest and highest rates. In addition to the amplitude decrease, the range of roughness values observed at a given spreading rate shows a similar order of magnitude decrease with transition between 60 and 80 mm/yr. The transition of ridge axis gravity is most apparent at three relatively unexplored locations on the Southeast Indian Ridge and the Pacific-Antarctic Rise; on these intermediate rate ridges the transition occurs abruptly across transform faults.

Small, C, Sandwell DT.  1989.  An Abrupt Change in Ridge Axis Gravity with Spreading Rate. Journal of Geophysical Research-Solid Earth and Planets. 94:17383-17392.   10.1029/JB094iB12p17383   AbstractWebsite

The global mid-ocean ridge system shows a marked change in morphology and isostatic compensation as a function of spreading rate. Fast spreading ridges have axial highs with little bathymetric relief and low-amplitude gravity signatures indicating that they are nearly in local isostatic equilibrium. Slow spreading ridges have large axial valleys bounded by rugged topography (Macdonald, 1982) and large axial gravity troughs indicating that they are dynamically maintained. While this variation in ridge axis morphology with spreading rate has been observed, it has not been analyzed in a comprehensive manner. Moreover, it is not known whether the transition from axial valley to axial high is a continuous function of spreading rate or whether it occurs abruptly at a particular rate. Such observations would provide important constraints on models of ridge axis dynamics. Vertical deflection profiles collected by the Geosat radar altimeter have sufficient accuracy and resolution to reveal the change in ridge axis gravity with spreading rate. In this study, we have analyzed 44 Geosat profiles over ridges with spreading rates ranging from 14 to 155 mm/yr. In agreement with previous studies, we find that slow spreading ridges (<60 mm/yr) usually have high amplitude gravity troughs (40–100 μrad = 40–100 mGal), while fast spreading ridges (>70 mm/yr) are characterized by low-amplitude ridge axis highs (∼15 μrad). Unexpectedly, we find that the transition from axial trough to axial high occurs abruptly at a spreading rate of 60–70 mm/yr. Ridge axis gravity signatures are highly variable for rates less than 65 mm/yr and very uniform at higher rates. The transition of the gravity signature appears to be more abrupt than the transition of the topographic signature, suggesting an abrupt change in the style of isostatic compensation with spreading rate. Published models of ridge axis dynamics do not explain this sharp transition.

Small, C, Sandwell D.  1996.  Sights unseen. Natural History. 105:28-33. AbstractWebsite
Small, C, Sandwell DT.  1994.  Imaging Midocean Ridge Transitions with Satellite Gravity. Geology. 22:123-126.   10.1130/0091-7613(1994)022<0123:imortw>;2   AbstractWebsite

Gravity maps derived from satellite altimeter measurements provide unprecedented medium-resolution coverage of sparsely surveyed mid-ocean ridges in the southern oceans. A spectral analysis of 76 000 km of coincident shipboard and satellite gravity measurements shows that satellite altimeters can accurately resolve features with half-wavelengths as short as 13 km. The coverage and resolution of these gravity data allow us to determine accurately both the location of poorly charted ridge axes and the variation in axial anomaly character along the ridge axis, although their detailed morphology is not resolved. The results of this study support earlier studies that showed a transition from spreading-rate-dependent axial gravity lows to rate-independent axial highs with increasing spreading rate. Four such transitions are imaged on the Southeast Indian Ridge and Pacific Antarctic Ridge. We expect that these transitions are the result of a temperature-sensitive threshold phenomenon and may be influenced by nearby hot spots.

Small, C, Sandwell DT.  1992.  A Comparison of Satellite and Shipboard Gravity Measurements in the Gulf-of-Mexico. Geophysics. 57:885-893.   10.1190/1.1443301   AbstractWebsite

Satellite altimeters have mapped the marine geoid over virtually all of the world's oceans. These geoid height measurements may be used to compute free air gravity anomalies in areas where shipboard measurements are scarce. Two-dimensional (2-D) transformations of geoid height to gravity are limited by currently available satellite track spacing and usually sacrifice short wavelength resolution. Full resolution may be retained along widely spaced satellite tracks if a one dimensional (1-D) transformation is used. Although the 1-D transform retains full resolution, it assumes that the gravity field is lineated perpendicular to the profile and is therefore limited by the orientation of the profile relative to the field. We investigate the resolution and accuracy of the 1-D transform method in the Northern Gulf of Mexico by comparing satellite gravity profiles with high quality shipboard data provided by Edcon Inc. The long wavelength components of the gravity field are constrained by a low degree reference field while the short wavelength components are computed from altimeter profiles. We find that rms misfit decreases with increasing spherical harmonic degree of the reference field up to 180 degrees (lambda > 220 km) with negligible improvement for higher degrees. The average rms misfit for the 17 profiles used in this study was 6.5 mGal with a 180 degree reference field. Spectral coherence estimates indicate that the satellite data resolve features with wavelengths as short as 25 km.

Smith, WHF, Sandwell DT.  1994.  Bathymetric Prediction from Dense Satellite Altimetry and Sparse Shipboard Bathymetry. Journal of Geophysical Research-Solid Earth. 99:21803-21824.   10.1029/94jb00988   AbstractWebsite

The southern oceans (south of 30 degrees S) are densely covered with satellite-derived gravity data (track spacing 2-4 km) and sparsely covered with shipboard depth soundings (hundreds of kilometers between tracks in some areas). Flexural isostatic compensation theory suggests that bathymetry and downward continued gravity data may show linear correlation in a band of wavelengths 15-160 km, if sediment cover is thin and seafloor relief is moderate. At shorter wavelengths, the gravity field is insensitive to seafloor topography because of upward continuation from the seafloor to the sea surface; at longer wavelengths, isostatic compensation cancels out most of the gravity field due to the seafloor topography. We combine this theory with Wiener optimization theory and empirical evidence for gravity noise-to-signal ratios to design low-pass and band-pass filters to use in predicting bathymetry from gravity. The prediction combines long wavelengths (> 160 km) from low-pass-filtered soundings with an intermediate-wavelength solution obtained from multiplying downward continued, band-pass filtered (15-160 km) gravity data by a scaling factor S. S is empirically determined from the correlation between gravity data and existing soundings in the 15-160 km band by robust regression and varies at long wavelengths. We find that areas with less than 200 m of sediment cover show correlation between gravity and bathymetry significant at the 99% level, and S may be related to the density of seafloor materials in these areas. The prediction has a horizontal resolution limit of 5-10 km in position and is within 100 m of actual soundings at 50% of grid points and within 240 m at 80% of these. In areas of very rugged topography the prediction underestimates the peak amplitudes of seafloor features. Images of the prediction reveal many tectonic features not seen on any existing bathymetric charts. Because the prediction relies on the gravity field at wavelengths < 160 km, it is insensitive to errors in the navigation of sounding lines but also cannot completely reproduce them. Therefore it may be used to locate tectonic features but should not be used to assess hazards to navigation. The prediction is available from the National Geophysical Data Center in both digital and printed form.

Smith, WHF, Sandwell DT.  1997.  Global sea floor topography from satellite altimetry and ship depth soundings. Science. 277:1956-1962.   10.1126/science.277.5334.1956   AbstractWebsite

A digital bathymetric map of the oceans with a horizontal resolution of 1 to 12 kilometers was derived by combining available depth soundings with high-resolution marine gravity information from the Geosat and ERS-1 spacecraft. Previous global bathymetric maps lacked features such as the 1600-kilometer-long Foundation Seamounts chain in the South Pacific. This map shows relations among the distributions of depth, sea floor area, and sea floor age that do not fit the predictions of deterministic models of subsidence due to lithosphere cooling but may be explained by a stochastic model in which randomly distributed reheating events warm the lithosphere and raise the ocean floor.

Smith, WHF, Sandwell DT.  1997.  Measured and estimated seafloor topography : [world]. Research publication / World Data Center-A for Marine Geology and Geophysics RP-1. , Boulder, COLa Jolla, CA: National Geophysical Data Center, NOAA ;Geological Data Center, Scripps Institution of Oceanography, Abstract
Smith, B, Sandwell D.  2003.  Coulomb stress accumulation along the San Andreas Fault system. Journal of Geophysical Research-Solid Earth. 108   10.1029/2002jb002136   AbstractWebsite

[1] Stress accumulation rates along the primary segments of the San Andreas Fault system are computed using a three-dimensional (3-D) elastic half-space model with realistic fault geometry. The model is developed in the Fourier domain by solving for the response of an elastic half-space due to a point vector body force and analytically integrating the force from a locking depth to infinite depth. This approach is then applied to the San Andreas Fault system using published slip rates along 18 major fault strands of the fault zone. GPS-derived horizontal velocity measurements spanning the entire 1700 x 200 km region are then used to solve for apparent locking depth along each primary fault segment. This simple model fits remarkably well (2.43 mm/yr RMS misfit), although some discrepancies occur in the Eastern California Shear Zone. The model also predicts vertical uplift and subsidence rates that are in agreement with independent geologic and geodetic estimates. In addition, shear and normal stresses along the major fault strands are used to compute Coulomb stress accumulation rate. As a result, we find earthquake recurrence intervals along the San Andreas Fault system to be inversely proportional to Coulomb stress accumulation rate, in agreement with typical coseismic stress drops of 1-10 MPa. This 3-D deformation model can ultimately be extended to include both time-dependent forcing and viscoelastic response.

Smith, B, Sandwell D.  2004.  A three-dimensional semianalytic viscoelastic model for time-dependent analyses of the earthquake cycle. Journal of Geophysical Research-Solid Earth. 109   10.1029/2004jb003185   AbstractWebsite

[ 1] Exploring the earthquake cycle for large, complex tectonic boundaries that deform over thousands of years requires the development of sophisticated and efficient models. In this paper we introduce a semianalytic three-dimensional (3-D) linear viscoelastic Maxwell model that is developed in the Fourier domain to exploit the computational advantages of the convolution theorem. A new aspect of this model is an analytic solution for the surface loading of an elastic plate overlying a viscoelastic half-space. When fully implemented, the model simulates ( 1) interseismic stress accumulation on the upper locked portion of faults, ( 2) repeated earthquakes on prescribed fault segments, and ( 3) the viscoelastic response of the asthenosphere beneath the plate following episodic ruptures. We verify both the analytic solution and computer code through a variety of 2-D and 3-D tests and examples. On the basis of the methodology presented here, it is now possible to explore thousands of years of the earthquake cycle along geometrically complex 3-D fault systems.

Smith, B, Sandwell D.  2003.  Accuracy and resolution of shuttle radar topography mission data. Geophysical Research Letters. 30   10.1029/2002gl016643   AbstractWebsite

[1] We assess the accuracy and resolution of topography data provided by the Shuttle Radar Topography Mission (SRTM) through spectral comparisons with the National Elevation Dataset (NED) and a high-resolution laser data set of the 1999 Hector Mine earthquake rupture. We find that SRTM and the NED are coherent for wavelengths greater than 200 m, however the spatial resolution of the NED data is superior to the SRTM data for wavelengths shorter than 350 m, likely due to the application of a boxcar filter applied during final SRTM processing stages. From these results, a low-pass filter/decimation algorithm can be designed in order to expedite large-area SRTM applications.

Smith, BR, Sandwell DT.  2006.  A model of the earthquake cycle along the San Andreas Fault System for the past 1000 years. Journal of Geophysical Research-Solid Earth. 111   10.1029/2005jb003703   AbstractWebsite

[1] We simulate 1000 years of the earthquake cycle along the San Andreas Fault System by convolving best estimates of interseismic and coseismic slip with the Green's function for a point dislocation in an elastic plate overlying a viscoelastic half-space. Interseismic slip rate is based on long-term geological estimates while fault locking depths are derived from horizontal GPS measurements. Coseismic and postseismic deformation is modeled using 70 earthquake ruptures, compiled from both historical data and paleoseismic data. This time-dependent velocity model is compared with 290 present-day geodetic velocity vectors to place bounds on elastic plate thickness and viscosity of the underlying substrate. Best fit models (RMS residual of 2.46 mm/yr) require an elastic plate thickness greater than 60 km and a substrate viscosity between 2 x 10(18) and 5 x 10(19) Pa s. These results highlight the need for vertical velocity measurements developed over long time spans (> 20 years). Our numerical models are also used to investigate the 1000-year evolution of Coulomb stress. Stress is largely independent of assumed rheology, but is very sensitive to the slip history on each fault segment. As expected, present-day Coulomb stress is high along the entire southern San Andreas because there have been no major earthquakes over the past 150 - 300 years. Animations S1 and S2 of the time evolution of vector displacement and Coulomb stress are available as auxiliary material.

Smith-Konter, BR, Sandwell DT, Shearer P.  2011.  Locking depths estimated from geodesy and seismology along the San Andreas Fault System: Implications for seismic moment release. Journal of Geophysical Research-Solid Earth. 116   10.1029/2010jb008117   AbstractWebsite

The depth of the seismogenic zone is a critical parameter for earthquake hazard models. Independent observations from seismology and geodesy can provide insight into the depths of faulting, but these depths do not always agree. Here we inspect variations in fault depths of 12 segments of the southern San Andreas Fault System derived from over 1000 GPS velocities and 66,000 relocated earthquake hypocenters. Geodetically determined locking depths range from 6 to 22 km, while seismogenic thicknesses are largely limited to depths of 11-20 km. These seismogenic depths best match the geodetic locking depths when estimated at the 95% cutoff depth in seismicity, and most fault segment depths agree to within 2 km. However, the Imperial, Coyote Creek, and Borrego segments have significant discrepancies. In these cases the geodetically inferred locking depths are much shallower than the seismogenic depths. We also examine variations in seismic moment accumulation rate per unit fault length as suggested by seismicity and geodesy and find that both approaches yield high rates ( 1.5-1.8 x 10(13) Nm/yr/km) along the Mojave and Carrizo segments and low rates (similar to 0.2 x 1013 Nm/yr/km) along several San Jacinto segments. The largest difference in seismic moment between models is calculated for the Imperial segment, where the moment rate from seismic depths is a factor of similar to 2.5 larger than that from geodetic depths. Such variability has important implications for the accuracy to which future major earthquake magnitudes can be estimated.

Smith-Konter, B, Sandwell D.  2009.  Stress evolution of the San Andreas fault system: Recurrence interval versus locking depth. Geophysical Research Letters. 36   10.1029/2009gl037235   AbstractWebsite

Major ruptures along the San Andreas Fault System (SAFS) are driven by stress that has accumulated in the upper locked portion of the crust. The present-day stress accumulation rate on any given fault segment is fairly well resolved by current geodetic measurements. Model stress accumulation rates vary between 0.5 and 7 MPa per century and are inversely proportional to earthquake recurrence intervals. In contrast, the total accumulated stress on a given fault segment is poorly resolved since it depends on the uncertain rupture history of each fault over the past few thousand years. We simulate accumulated stress at crustal depths for both past and present-day conditions by assuming complete release of accumulated slip deficit during major ruptures. These speculative results indicate that the southern San Andreas, which has not ruptured in a major earthquake in over 300 years, is currently approaching a threshold stress level. Citation: Smith-Konter, B., and D. Sandwell (2009), Stress evolution of the San Andreas fault system: Recurrence interval versus locking depth, Geophys. Res. Lett., 36, L13304, doi: 10.1029/2009GL037235.

Smith-Konter, BR, Thornton GM, Sandwell DT.  2014.  Vertical crustal displacement due to interseismic deformation along the San Andreas fault: Constraints from tide gauges. Geophysical Research Letters. 41:3793-3801.   10.1002/2014gl060091   AbstractWebsite

Interseismic motion along complex strike-slip fault systems such as the San Andreas Fault System (SAFS) can produce vertical velocities that are similar to 10 times smaller than horizontal velocities, caused by along-strike variations in fault orientation and locking depth. Tide gauge stations provide a long (50-100 year) recording history of sea level change due to several oceanographic and geologic processes, including vertical earthquake cycle deformation. Here we compare relative sea level displacements with predictions from a 3-D elastic/viscoelastic earthquake cycle model of the SAFS. We find that models with lithospheric structure reflecting a thick elastic plate (> 50km) and moderate viscosities produce vertical motions in surprisingly good agreement with the relative tide gauge uplift rates. These results suggest that sea level variations along the California coastline contain a small but identifiable tectonic signal reflecting the flexure of the elastic plate caused by bending moments applied at the ends of locked faults.