Publications

Export 4 results:
Sort by: [ Author  (Asc)] Title Type Year
A B C D E F G H I J [K] L M N O P Q R S T U V W X Y Z   [Show ALL]
K
Kaneko, Y, Fialko Y, Sandwell DT, Tong X, Furuya M.  2013.  Interseismic deformation and creep along the central section of the North Anatolian Fault (Turkey): InSAR observations and implications for rate-and-state friction properties. Journal of Geophysical Research-Solid Earth. 118:316-331.   10.1029/2012jb009661   AbstractWebsite

We present high-resolution measurements of interseismic deformation along the central section of the North Anatolian Fault (NAF) in Turkey using interferometric synthetic aperture radar data from the Advanced Land Observing Satellite and Envisat missions. We generated maps of satellite line-of-sight velocity using five ascending Advanced Land Observing Satellite tracks and one descending Envisat track covering the NAF between 31.2 degrees E and 34.3 degrees E. The line-of-sight velocity reveals discontinuities of up to similar to 5 mm/yr across the Ismetpasa segment of the NAF, implying surface creep at a rate of similar to 9 mm/yr; this is a large fraction of the inferred slip rate of the NAF (21-25 mm/yr). The lateral extent of significant surface creep is about 75 km. We model the inferred surface velocity and shallow fault creep using numerical simulations of spontaneous earthquake sequences that incorporate laboratory-derived rate and state friction. Our results indicate that frictional behavior in the Ismetpasa segment is velocity strengthening at shallow depths and transitions to velocity weakening at a depth of 3-6 km. The inferred depth extent of shallow fault creep is 5.5-7 km, suggesting that the deeper locked portion of the partially creeping segment is characterized by a higher stressing rate, smaller events, and shorter recurrence interval. We also reproduce surface velocity in a locked segment of the NAF by fault models with velocity-weakening conditions at shallow depth. Our results imply that frictional behavior in a shallow portion of major active faults with little or no shallow creep is mostly velocity weakening. Citation: Kaneko, Y., Y. Fialko, D. T. Sandwell, X. Tong, and M. Furuya (2013), Interseismic deformation and creep along the central section of the North Anatolian Fault (Turkey): InSAR observations and implications for rate-and-state friction properties, J. Geophys. Res. Solid Earth, 118, 316-331, doi: 10.1029/2012JB009661.

Keating, B, Cherkis NZ, Fell PW, Handschmacher D, Hey RN, Lazarewicz A, Naar DF, Perry RK, Sandwell D, Schwank DC, Vogt P, Zondek B.  1984.  Field-Tests of Seasat Bathymetric Detections. Marine Geophysical Researches. 7:69-71.   10.1007/bf00305411   AbstractWebsite

Knowledge of the locations and sizes of seamounts is of great importance in applications such as inertial navigation and ocean mining. The quality and density of bathymetry data in the equatorial regions and the southern hemisphere are, unifortunately, highly variable. Our present knowledge of bathymetry, and in particular of seamount locations and characteristics, is based upon ship surveys, which are both time-consuming and expensive. It is likely that a significant number of uncharted seamounts exist throughout the oceans, and remote-sensing techniques may be the most effective means of locating them.

Kilb, D, Keen CS, Newman RL, Kent GM, Sandwell DT, Vernon FL, Johnson CL, Orcutt JA.  2003.  The Visualization Center at Scripps Institution of Oceanography: Education and Outreach. Seismological Research Letters. 74:641-648. AbstractWebsite

The immersive environment of the Visualization Center at Scripps, coupled with the presentation of current seismological research, has great education and outreach potential. Since its March 2002 opening, the Visualization Center at Scripps has had more than 2,500 visitors, and numerous virtual visitors have explored our Web pages, which include streaming QuickTime movies of geophysical data, tutorials on how to use SGI/Mac/Windows registered visualization software, and examples of visualizations developed by SIO researchers and faculty members (http://siovizcenter.ucsd.edu/library.shtml). We will continue to expand the use of the Visualization Center at Scripps for K-12 and informal education, and to use the center to supply geophysical data sets, movies, and research results to as large a group of educators as possible. Our goal is to develop more sustained K-12 educational programs and to generate assessments of the center's programs and the educational products created at the Center.

Koeberl, C, Sharpton VL, Harrison MT, Sandwell D, Murali AV, Burke K.  1990.  The Kara/Ust-Kara twin impact structure; a large-scale impact event in the Late Cretaceous. Special Paper - Geological Society of America. 247( Sharpton VL, Ward PD, Eds.).:233-238., Boulder, CO, United States (USA): Geological Society of America (GSA), Boulder, CO AbstractWebsite
n/a