Publications

Export 12 results:
Sort by: Author Title [ Type  (Asc)] Year
Book Chapter
Phiilips, RJ, Johnson CL, Mackwell SJ, Morgan P, Sandwell DT, Zuber MT.  1997.  Lithospheric Mechanics and Dynamics of Venus. Venus II--geology, geophysics, atmosphere, and solar wind environment. ( Bougher SW, Hunten DM, Phillips RJ, Eds.)., Tucson, Ariz.: University of Arizona Press Abstract
n/a
Journal Article
Jacobs, A, Sandwell D, Fialko Y, Sichoix L.  2002.  The 1999 (M-w 7. 1) Hector Mine, California, earthquake: Near-field postseismic deformation from ERS interferometry. Bulletin of the Seismological Society of America. 92:1433-1442.   10.1785/0120000908   AbstractWebsite

Interferometric synthetic aperture radar (InSAR) data over the area of the Hector Mine earthquake (M-w 7.1, 16 October 1999) reveal postseismic deformation of several centimeters over a spatial scale of 0.5 to 50 km. We analyzed seven SAR acquisitions to form interferograms over four time periods after the event. The main deformations seen in the line-of-sight (LOS) displacement maps are a region of subsidence (60 mm LOS increase) on the northern end of the fault, a region of uplift (45 mm LOS decrease) located to the northeast of the primary fault bend, and a linear trough running along the main rupture having a depth of up to 15 mm and a width of about 2 km. We correlate these features with a double left-bending, right-lateral, strike-slip fault that exhibits contraction on the restraining side and extension along the releasing side of the fault bends. The temporal variations in the near-fault postseismic deformation are consistent with a characteristic time scale of 135 + 42 or - 25 days, which is similar to the relaxation times following the 1992 Landers earthquake. High gradients in the LOS displacements occur on the fault trace, consistent with afterslip on the earthquake rupture. We derive an afterslip model by inverting the LOS data from both the ascending and descending orbits. Our model indicates that much of the afterslip occurs at depths of less than 3 to 4 km.

Sandwell, DT, Smith WHF, Gille S, Kappel E, Jayne S, Soofi K, Coakley B, Geli L.  2006.  Bathymetry from space: Rationale and requirements for a new, high-resolution altimetric mission. Comptes Rendus Geoscience. 338:1049-1062.   10.1016/j.crte.2006.05.014   AbstractWebsite

Bathymetry is foundational data, providing basic infrastructure for scientific, economic, educational, managerial, and political work. Applications as diverse as tsunami hazard assessment, communications cable and pipeline route planning, resource exploration, habitat management, and territorial claims under the Law of the Sea all require reliable bathymetric maps to be available on demand. Fundamental Earth science questions, such as what controls seafloor shape and how seafloor shape influences global climate, also cannot be answered without bathymetric maps having globally uniform detail. Current bathymetric, charts are inadequate for many of these applications because only a small fraction of the seafloor has been surveyed. Modern multibeam echosounders provide the best resolution, but it would take more than 200 ship-years and billions of dollars to complete the job. The seafloor topography can be charted globally, in five years, and at a cost under $100M. A radar altimeter mounted on an orbiting spacecraft can measure slight variations in ocean surface height, which reflect variations in the pull of gravity caused by seafloor topography. A new satellite altimeter mission, optimized to map the deep ocean bathymetry and gravity field, will provide a global map of the world's deep oceans at a resolution of 6-9 kin. This resolution threshold is critical for a large number of basic science and practical applications, including: determining the effects of bathymetry and seafloor roughness on ocean circulation, mixing, climate, and biological communities, habitats, and mobility; understanding the geologic processes responsible for ocean floor features unexplained by simple plate tectonics, such as abyssal hills, seamounts, microplates, and propagating rifts;. improving tsunami hazard forecast accuracy by mapping the deep-ocean topography that steers tsunami wave energy; mapping the marine gravity field to improve inertial navigation and provide homogeneous coverage of continental margins; providing bathymetric maps for numerous other practical applications, including reconnaissance for submarine cable and pipeline routes, improving tide models, and assessing potential territorial claims to the seabed under the United Nations Convention on the Law of the Sea. Because ocean bathymetry is a fundamental measurement of our planet, there is a broad spectrum of interest from government, the research community, industry, and the general public. Mission requirements. The resolution of the altimetry technique is limited by physical law, not instrument capability. Everything that can be mapped from space can be achieved now, and there is no gain in waiting for technological advances. Mission requirements for Bathymetry from Space are much less stringent and less costly than typical physical oceanography missions. Long-term sea-surface height accuracy is not needed; the fundamental measurement is the slope of the ocean surface to an accuracy of similar to 1 prad (1 mm km(-1)). The main mission requirements are: improved range precision (a factor of two or more improvement in altimeter range precision with respect to current altimeters is needed to reduce the noise due to ocean waves); - fine cross-track spacing and long mission duration (a ground track spacing of 6 km or less is required. A six-year mission would reduce the error by another factor of two); moderate inclination (existing satellite altimeters have relatively high orbital inclinations, thus their resolution of east-west components of ocean slope is poor at low latitudes. The new mission should have an orbital inclination close to 60 degrees or 120 degrees so as to resolve north-south and east-west components almost equally while still covering nearly all the world's ocean area); near-shore tracking (for applications near coastlines, the ability of the instrument to track the ocean surface close to shore, and acquire the surface soon after leaving land, is desirable).

O'Connor, JM, Hoernle K, Muller RD, Morgan JP, Butterworth NP, Hau F, Sandwell DT, Jokat W, Wijbrans JR, Stoffers P.  2015.  Deformation-related volcanism in the Pacific Ocean linked to the Hawaiian-Emperor bend. Nature Geoscience. 8:393-397.   10.1038/ngeo2416   AbstractWebsite

Ocean islands, seamounts and volcanic ridges are thought to form above mantle plumes. Yet, this mechanism cannot explain many volcanic features on the Pacific Ocean floor(1) and some might instead be caused by cracks in the oceanic crust linked to the reorganization of plate motions(1-3). A distinctive bend in the Hawaiian-Emperor volcanic chain has been linked to changes in the direction of motion of the Pacific Plate(4,5), movement of the Hawaiian plume(6-8), or a combination of both(9). However, these links are uncertain because there is no independent record that precisely dates tectonic events that affected the Pacific Plate. Here we analyse the geochemical characteristics of lava samples collected from the Musicians Ridges, lines of volcanic seamounts formed close to the Hawaiian-Emperor bend. We find that the geochemical signature of these lavas is unlike typical ocean island basalts and instead resembles mid-ocean ridge basalts. We infer that the seamounts are unrelated to mantle plume activity and instead formed in an extensional setting, due to deformation of the Pacific Plate. Ar-40/Ar-39 dating reveals that the Musicians Ridges formed during two time windows that bracket the time of formation of the Hawaiian-Emperor bend, 53-52 and 48-47 million years ago. We conclude that the Hawaiian-Emperor bend was formed by plate-mantle reorganization, potentially triggered by a series of subduction events at the Pacific Plate margins.

Sandwell, DT, Johnson CL, Bilotti F, Suppe J.  1997.  Driving forces for limited tectonics on Venus. Icarus. 129:232-244.   10.1006/icar.1997.5721   AbstractWebsite

The very high correlation of geoid height and topography on Venus, along with the high geoid topography ratio, can be interpreted as local isostatic compensation and/or dynamic compensation of topography at depths ranging from 50 to 350 km. For local compensation within the lithosphere, the swell-push force is proportional to the first moment of the anomalous density. Since the long-wavelength isostatic geoid height is also proportional to the first moment of the anomalous density, the swell push force is equal to the geoid height scaled by -g(2)/2 pi G. Because of this direct relationship, the style (i.e., thermal, Airy, or Pratt compensation) and depth of compensation do not need to be specified and can in fact vary over the surface. Phillips (1990) showed that this simple relationship between swell-push force and geoid also holds for dynamic uplift by shear traction on the base of the lithosphere caused by thermal convection of an isoviscous, infinite half-space mantle. Thus for all reasonable isostatic models and particular classes of dynamic models, the geoid height uniquely determines the magnitude of the swell-push body force that is applied to the venusian lithosphere. Given this body force and assuming Venus can be approximated by a uniform thickness thin elastic shell over an inviscid sphere, we calculate the present-day global strain field using equations given in Banerdt (1986); areas of positive geoid height are in a state of extension while areas of negative geoid height are in a state of compression. The present-day model strain field is compared to global strain patterns inferred from Magellan-derived maps of wrinkle ridges and rift zones. Wrinkle ridges, which are believed to reflect distributed compressive deformation, are generally confined to regions with geoid of less than 20 m while rift zones are found primarily along geoid highs. Moreover, much of the observed deformation matches the present-day model strain orientations suggesting that most of the rifts on Venus and many of the wrinkle ridges formed in a stress field similar to the present one. In several large regions, the present-day model strain pattern does not match the observations. This suggests that either the geoid has changed significantly since most of the strain occurred or our model assumptions are incorrect (e.g., there could be local plate boundaries where the stress pattern is discontinuous). Since the venusian lithosphere shows evidence for limited strain, the calculation also provides an estimate of the overall strength of the lithosphere in compression and extension which can be compared with rheological models of yield strength versus depth. At the crests of the major swells, where evidence for rifting is abundant, we find that the temperature gradient must be at least 7 K/km. (C) 1997 Academic Press.

Sandwell, DT, Winterer EL, Mammerickx J, Duncan RA, Lynch MA, Levitt DA, Johnson CL.  1995.  Evidence for Diffuse Extension of the Pacific Plate from Pukapuka Ridges and Cross-Grain Gravity Lineations. Journal of Geophysical Research-Solid Earth. 100:15087-15099.   10.1029/95jb00156   AbstractWebsite

Satellite altimeter measurements of marine gravity reveal 100 to 200-km wavelength lineations over a wide area of the Pacific plate oriented roughly in the direction of absolute plate motion. At least three mechanisms have been proposed for their origin: small-scale convective rolls aligned in the direction of absolute plate motion by shear in the asthenosphere; diffuse N-S extension of the lithosphere resulting in lineated zones of extension (boudins); and minihotspots that move slowly with respect to major hotspots and produce intermittent volcanism. Recently, several chains of linear volcanic ridges have been found to be associated with the gravity lineations. Following ridgelike gravity signatures apparent in high-resolution Geosat gravity measurements, we surveyed a series of volcanic ridges that extend northwest from the East Pacific Rise flank for 2600 km onto 40 Ma seafloor. Our survey data, as well as radiometric dates on samples we collected from the ridges, provide tight constraints on their origin: (1) Individual ridge segments and sets of ridges are highly elongate in the direction of present absolute plate motion. (2) The ridges formed along a band 50 to 70-km-wide in the trough of one of the more prominent gravity lineations. (3) Radiometric dates of the largest ridges show no hotspot age progression. Moreover, the directions predicted for minihotspot traces older than 24 Ma do not match observed directions of either the gravity lineations or the ridges. Based on this last observation, we reject the minihotspot model. The occurrence of the ridges in the trough of the gravity lineation is incompatible with the small-scale convection model which would predict increased volcanism above the convective upwelling. We favor the diffuse extension model because it is consistent with the occurrence of ridges in the trough above the more highly extended lithosphere. However, the multibeam data show no evidence for widespread normal faulting of the crust as predicted by the model. Perhaps the fault scarps are buried under more than 30 m of sediments and/or covered by the elongated ridges. Finally, we note that if ridge-push force is much smaller than trench-pull force, then near the ridge axis the direction of maximum tensile stress must be perpendicular to the direction of absolute plate motion.

McKenzie, D, Ford PG, Johnson C, Parsons B, Sandwell D, Saunders S, Solomon SC.  1992.  Features on Venus Generated by Plate Boundary Processes. Journal of Geophysical Research-Planets. 97:13533-13544.   10.1029/92JE01350   AbstractWebsite

Various observations suggest that there are processes on Venus that produce features similar to those associated with plate boundaries on Earth. Synthetic aperture radar images of Venus, taken with a radar whose wavelength is 12.6 cm, are compared with GLORIA images of active plate boundaries, obtained with a sound source whose wavelength is 23 cm. Features similar to transform faults and to abyssal hills on slow and fast spreading ridges can be recognized within the Artemis region of Venus but are not clearly visible elsewhere. The composition of the basalts measured by the Venera 13 and 14 and the Vega 2 spacecraft corresponds to that expected from adiabatic decompression, like that which occurs beneath spreading ridges on Earth. Structures that resemble trenches are widespread on Venus and show the same curvature and asymmetry as they do on Earth. These observations suggest that the same simple geophysical models that have been so successfully used to understand the tectonics of Earth can also be applied to Venus.

Zhang, SJ, Sandwell DT, Jin TY, Li DW.  2017.  Inversion of marine gravity anomalies over southeastern China seas from multi-satellite altimeter vertical deflections. Journal of Applied Geophysics. 137:128-137.   10.1016/j.jappgeo.2016.12.014   AbstractWebsite

The accuracy and resolution of marine gravity field derived from satellite altimetry mainly depends on the range precision and dense spatial distribution. This paper aims at modeling a regional marine gravity field with improved accuracy and higher resolution (1' x V') over Southeastern China Seas using additional data from CryoSat-2 as well as new data from AltiKa. Three approaches are used to enhance the precision level of satellite-derived gravity anomalies. Firstly we evaluate a suite of published retracking algorithms and find the two-step retracker is optimal for open ocean waveforms. Secondly, we evaluate the filtering and resampling procedure used to reduce the full 20 or 40 Hz data to a lower rate having lower noise. We adopt a uniform low-pass filter for all altimeter missions and resample at 5 Hz and then perform a second editing based on sea surface slope estimates from previous models. Thirdly, we selected WHU12 model to update the corrections provided in geophysical data record. We finally calculated the 1' x 1' marine gravity field model by using EGM2008 model as reference field during the remove/restore procedure. The root mean squares of the discrepancies between the new result and DTU10, DTU13, V23.1, EGM2008 are within the range of 1.8-3.9 mGal, while the verification with respect to shipboard gravity data shows that the accuracy of the new result reached a comparable level with DTU13 and was slightly superior to V23.1, DTU10 and EGM2008 models. Moreover, the new result has a 2 mGal better accuracy over open seas than coastal areas with shallow water depth. (C) 2016 Elsevier B.V. All rights reserved.

Johnson, CL, Sandwell DT.  1992.  Joints in Venusian Lava Flows. Journal of Geophysical Research-Planets. 97:13601-13610. AbstractWebsite

Venusian plains regions, as imaged by the Magellan spacecraft, display many styles of tectonic and volcanic deformation. Radar images of several areas of the volcanic plains reveal polygonal patterns of bright lineations, Intersection geometries of the lineations defining the polygonal patterns are typical of those found in tensile networks. In addition, the polygonal patterns generally exhibit no preferred orientation, implying that they are the result of horizontally isotropic stress fields. Such stress fields usually arise on the Earth as a consequence of desiccation, freeze-thaw cycles, or cooling and produce mud cracks, ice-wedge polygons, and columnar joints, respectively. We propose that the polygonal patterns seen in the Magellan images of some of the volcanic plains are the result of thermal stresses. We consider two alternative scenarios which would generate sufficient tensile thermal stresses Lo cause failure. The first scenario is that of a cooling lava flow; the residual thermal stress which would develop (assuming no failure of the rock) is tensional and of the order of 400 MPa. This is much greater than the strength of unfractured terrestrial basalt (approximately 10 MPa), so we can expect joints to form during cooling of Venusian lava flows. However, the spacing of the polygonal lineations seen in Magellan images is typically 1-2 km, much larger than the largest spacings of decimeters for joints in terrestrial lavas. The second scenario involves an increased heat flux to the base of the lithosphere; the resulting thermal stresses cause the upper lithosphere to be in tension and the lower lithosphere to be in compression. Brittle tensile failure occurs near the surface due to the finite yield strength of the lithosphere. The maximum depth to which failure occurs increases with increasing elevation of the temperature gradient. For an initially 25-km-thick lithosphere and temperature gradient of ll-degrees/km, this maximum depth varies from 0.5 km to 2 km as the temperature gradient is increased to 12-degrees/km and 22-degrees/km, respectively. Both the cooling flow scenario and the heated lithosphere scenario produce isotropic tensile surface stress patterns, but the heated lithosphere model is more compatible with the kilometer scale of the polygonal patterns seen in Magellan images.

Johnson, CL, Sandwell DT.  1994.  Lithospheric Flexure on Venus. Geophysical Journal International. 119:627-647.   10.1111/j.1365-246X.1994.tb00146.x   AbstractWebsite

Topographic flexural signatures on Venus are generally associated with the outer edges of coronae, with some chasmata and with rift zones. Using Magellan altimetry profiles and grids of venusian topography, we identified 17 potential flexure sites. Both 2-D cartesian, and 2-D axisymmetric, thin-elastic plate models were used to establish the flexural parameter and applied load/bending moment. These parameters can be used to infer the thickness, strength and possibly the dynamics of the venusian lithosphere. Numerical simulations show that the 2-D model provides an accurate representation of the flexural parameter as long as the radius of the feature is several times the flexural parameter. However, an axisymmetric model must be used to obtain a reliable estimate of load/bending moment. 12 of the 17 areas were modelled with a 2-D thin elastic plate model, yielding best-fit effective elastic thicknesses in the range 12 to 34 km. We find no convincing evidence for flexure around smaller coronae, though five possible candidates have been identified. These five features show circumferential topographic signatures which, if interpreted as flexure, yield mean elastic thicknesses ranging from 6 to 22 km. We adopt a yield strength envelope for the venusian lithosphere based on a dry olivine rheology and on the additional assumption that strain rates on Venus are similar to, or lower than, strain rates on Earth. Many of the flexural signatures correspond to relatively high plate-bending curvatures so the upper and lower parts of the lithosphere should theoretically exhibit brittle fracture and flow, respectively. For areas where the curvatures are not too extreme, the estimated elastic thickness is used to estimate the larger mechanical thickness of the lithosphere. The large amplitude flexures in Aphrodite Terra predict complete failure of the plate, rendering mechanical thickness estimates from these features unreliable. One smaller corona also yielded an unreliable mechanical thickness estimate based on the marginal quality of the profile data. Reliable mechanical thicknesses found by forward modelling in this study are 21 km-37 km, significantly greater than the 13 km-20 km predictions based on heat-flow scaling arguments and chondritic thermal models. If the modelled topography is the result of lithospheric flexure, then our results for mechanical thickness, combined with the lack of evidence for flexure around smaller features, are consistent with a venusian lithosphere somewhat thicker than predicted. Dynamical models for bending of a viscous lithosphere at low strain rates predict a thick lithosphere, also consistent with low temperature gradients. Recent laboratory measurements indicate that dry crustal materials are much stronger than previously believed. Corresponding time-scales for gravitational relaxation are 10(8)-10(9) yr, making gravitational relaxation an unlikely mechanism for the generation of the few inferred flexural features. If dry olivine is also found to be stronger than previously believed, the mechanical thickness estimates for Venus will be reduced, and will be more consistent with the predictions of global heat scaling models.

Xu, XH, Ward LA, Jiang JL, Smith-Konter B, Tymofyeyeva E, Lindsey EO, Sylvester AG, Sandwell DT.  2018.  Surface creep rate of the southern San Andreas Fault modulated by stress perturbations from nearby large events. Geophysical Research Letters. 45:10259-10268.   10.1029/2018gl080137   AbstractWebsite

A major challenge for understanding the physics of shallow fault creep has been to observe and model the long-term effect of stress changes on creep rate. Here we investigate the surface creep along the southern San Andreas fault (SSAF) using data from interferometric synthetic aperture radar spanning over 25 years (ERS 1992-1999, ENVISAT 2003-2010, and Sentinel-1 2014-present). The main result of this analysis is that the average surface creep rate increased after the Landers event and then decreased by a factor of 2-7 over the past few decades. We consider quasi-static and dynamic Coulomb stress changes on the SSAF due to these three major events. From our analysis, the elevated creep rates after the Landers can only be explained by static stress changes, indicating that even in the presence of dynamically triggered creep, static stress changes may have a long-lasting effect on SSAF creep rates. Plain Language Summary There are two significant conclusions from this study. First, we analyzed 25 years of InSAR measurements over the Southern San Andreas Fault system to document a major increase in the average creep rate following the 1992 Mw 7.3 Landers Earthquake which is then followed by creep rate reductions after the 1999 Mw 7.1 Hector Mine Earthquake and the 2010 Mw 7.2 El Major Cucapah Earthquake. Second, we attribute all these creep rate changes to the Coulomb stress variations from these three major Earthquakes. The dynamic Coulomb stress changes are similar for all three events, contributing to triggered creep on the SSAF. In contrast, the static Coulomb stress changes on the SSAF are positive after the Landers and negative after the Hector Mine and El Major Cucapah, coinciding with the higher average creep rate after the Landers and lower rates after the other two events. An implication of this study is that small but steady Coulomb stress changes have a larger impact on shallow creep than the larger dynamic stress changes associated with passing seismic waves. These results illuminate the significance of time scale-dependent complexity of shallow fault creep and how these behaviors are communicated by stress perturbations from regional earthquakes.

Kilb, D, Keen CS, Newman RL, Kent GM, Sandwell DT, Vernon FL, Johnson CL, Orcutt JA.  2003.  The Visualization Center at Scripps Institution of Oceanography: Education and Outreach. Seismological Research Letters. 74:641-648. AbstractWebsite

The immersive environment of the Visualization Center at Scripps, coupled with the presentation of current seismological research, has great education and outreach potential. Since its March 2002 opening, the Visualization Center at Scripps has had more than 2,500 visitors, and numerous virtual visitors have explored our Web pages, which include streaming QuickTime movies of geophysical data, tutorials on how to use SGI/Mac/Windows registered visualization software, and examples of visualizations developed by SIO researchers and faculty members (http://siovizcenter.ucsd.edu/library.shtml). We will continue to expand the use of the Visualization Center at Scripps for K-12 and informal education, and to use the center to supply geophysical data sets, movies, and research results to as large a group of educators as possible. Our goal is to develop more sustained K-12 educational programs and to generate assessments of the center's programs and the educational products created at the Center.