Publications

Export 161 results:
Sort by: Author Title Type [ Year  (Desc)]
2017
Zhang, SJ, Sandwell DT, Jin TY, Li DW.  2017.  Inversion of marine gravity anomalies over southeastern China seas from multi-satellite altimeter vertical deflections. Journal of Applied Geophysics. 137:128-137.   10.1016/j.jappgeo.2016.12.014   AbstractWebsite

The accuracy and resolution of marine gravity field derived from satellite altimetry mainly depends on the range precision and dense spatial distribution. This paper aims at modeling a regional marine gravity field with improved accuracy and higher resolution (1' x V') over Southeastern China Seas using additional data from CryoSat-2 as well as new data from AltiKa. Three approaches are used to enhance the precision level of satellite-derived gravity anomalies. Firstly we evaluate a suite of published retracking algorithms and find the two-step retracker is optimal for open ocean waveforms. Secondly, we evaluate the filtering and resampling procedure used to reduce the full 20 or 40 Hz data to a lower rate having lower noise. We adopt a uniform low-pass filter for all altimeter missions and resample at 5 Hz and then perform a second editing based on sea surface slope estimates from previous models. Thirdly, we selected WHU12 model to update the corrections provided in geophysical data record. We finally calculated the 1' x 1' marine gravity field model by using EGM2008 model as reference field during the remove/restore procedure. The root mean squares of the discrepancies between the new result and DTU10, DTU13, V23.1, EGM2008 are within the range of 1.8-3.9 mGal, while the verification with respect to shipboard gravity data shows that the accuracy of the new result reached a comparable level with DTU13 and was slightly superior to V23.1, DTU10 and EGM2008 models. Moreover, the new result has a 2 mGal better accuracy over open seas than coastal areas with shallow water depth. (C) 2016 Elsevier B.V. All rights reserved.

Zhang, SJ, Sandwell DT.  2017.  Retracking of SARAL/AltiKa Radar Altimetry Waveforms for Optimal Gravity Field Recovery. Marine Geodesy. 40:40-56.   10.1080/01490419.2016.1265032   AbstractWebsite

The accuracy of the marine gravity field derived from satellite altimetry depends on dense track spacing as well as high range precision. Here, we investigate the range precision that can be achieved using a new shorter wavelength Ka-band altimeter AltiKa aboard the SARAL spacecraft. We agree with a previous study that found that the range precision given in the SARAL/AltiKa Geophysical Data Records is more precise than that of Ku-band altimeter by a factor of two. Moreover, we show that two-pass retracking can further improve the range precision by a factor of 1.7 with respect to the 40 Hz-retracked data (item of range_40 hz) provided in the Geophysical Data Records. The important conclusion is that a dedicated Ka-band altimeter-mapping mission could substantially improve the global accuracy of the marine gravity field with complete coverage and a track spacing of <6 km achievable in similar to 1.3 years. This would reveal thousands of uncharted seamounts on the ocean floor as well as important tectonic features such as microplates and abyssal hill fabric.

2016
Sandwell, DT, Wessel P.  2016.  Interpolation of 2-D vector data using constraints from elasticity. Geophysical Research Letters. 43:10703-10709.   10.1002/2016gl070340   AbstractWebsite

We present a method for interpolation of sparse two-dimensional vector data. The method is based on the Green's functions of an elastic body subjected to in-plane forces. This approach ensures elastic coupling between the two components of the interpolation. Users may adjust the coupling by varying Poisson's ratio. Smoothing can be achieved by ignoring the smallest eigenvalues in the matrix solution for the strengths of the unknown body forces. We demonstrate the method using irregularly distributed GPS velocities from southern California. Our technique has been implemented in both the Generic Mapping Tools and MATLAB (R).

Howell, S, Smith-Konter B, Frazer N, Tong XP, Sandwell D.  2016.  The vertical fingerprint of earthquake cycle loading in southern California. Nature Geoscience. 9:611-+.   10.1038/ngeo2741   AbstractWebsite

The San Andreas Fault System, one of the best-studied transform plate boundaries on Earth, is well known for its complex network of locked faults that slowly deform the crust in response to large-scale plate motions(1-8). Horizontal interseismic motions of the fault system are largely predictable, but vertical motions arising from tectonic sources remain enigmatic. Here we show that when carefully treated for spatial consistency, global positioning system-derived vertical velocities expose a small-amplitude (+/- 2mmyr(-1)), but spatially considerable (200 km), coherent pattern of uplift and subsidence straddling the fault system in southern California. We employ the statistical method of model selection to isolate this vertical velocity field fromnon-tectonic signals that induce velocity variations in both magnitude and direction across small distances (less than tens of kilometres; ref. 9), and find remarkable agreement with the sense of vertical motions predicted by physical earthquake cycle models spanning the past few centuries(6,10). We suggest that these motions reveal the subtle, but identifiable, tectonic fingerprint of far-field flexure due to more than 300 years of fault locking and creeping depth variability. Understanding this critical component of interseismic deformation at a complex strike-slip plate boundary will better constrain regional mechanics and crustal rheology, improving the quantification of seismic hazards in southern California and beyond.

DeSanto, JB, Sandwell DT, Chadwell CD.  2016.  Seafloor geodesy from repeated sidescan sonar surveys. Journal of Geophysical Research-Solid Earth. 121:4800-4813.   10.1002/2016jb013025   AbstractWebsite

Accurate seafloor geodetic methods are critical to the study of marine natural hazards such as megathrust earthquakes, landslides, and volcanoes. We propose digital image correlation of repeated shipboard sidescan sonar surveys as a measurement of seafloor deformation. We test this method using multibeam surveys collected in two locales: 2500m deep lightly sedimented seafloor on the flank of a spreading ridge and 4300m deep heavily sedimented seafloor far from any plate boundary. Correlation of these surveys are able to recover synthetic displacements in the across-track (range) direction accurate to within 1m and in the along-track (azimuth) direction accurate to within 1-10m. We attribute these accuracies to the inherent resolution of sidescan data being better in the range dimension than the azimuth dimension. These measurements are primarily limited by the accuracy of the ship navigation. Dual-frequency GPS units are accurate to approximate to 10cm, but single-frequency GPS units drift on the order of 1m/h and are insufficient for geodetic application.

Muller, RD, Qin XD, Sandwell DT, Dutkiewicz A, Williams SE, Flament N, Maus S, Seton M.  2016.  The GPlates Portal: Cloud-based interactive 3D visualization of global geophysical and geological data in a web browser. Plos One. 11   10.1371/journal.pone.0150883   AbstractWebsite

The pace of scientific discovery is being transformed by the availability of 'big data' and open access, open source software tools. These innovations open up new avenues for how scientists communicate and share data and ideas with each other and with the general public. Here, we describe our efforts to bring to life our studies of the Earth system, both at present day and through deep geological time. The GPlates Portal (portal.gplates.org) is a gateway to a series of virtual globes based on the Cesium Javascript library. The portal allows fast interactive visualization of global geophysical and geological data sets, draped over digital terrain models. The globes use WebGL for hardware-accelerated graphics and are cross-platform and cross-browser compatible with complete camera control. The globes include a visualization of a high-resolution global digital elevation model and the vertical gradient of the global gravity field, highlighting small-scale seafloor fabric such as abyssal hills, fracture zones and seamounts in unprecedented detail. The portal also features globes portraying seafloor geology and a global data set of marine magnetic anomaly identifications. The portal is specifically designed to visualize models of the Earth through geological time. These space-time globes include tectonic reconstructions of the Earth's gravity and magnetic fields, and several models of long-wavelength surface dynamic topography through time, including the interactive plotting of vertical motion histories at selected locations. The globes put the on-the-fly visualization of massive data sets at the fingertips of end-users to stimulate teaching and learning and novel avenues of inquiry.

Xu, X, Tong X, Sandwell DT, Milliner CWD, Dolan JF, Hollingsworth J, Leprince S, Ayoub F.  2016.  Refining the shallow slip deficit. Geophysical Journal International. 204:1867-1886.   10.1093/gji/ggv563   Abstract

Geodetic slip inversions for three major (Mw > 7) strike-slip earthquakes (1992 Landers, 1999 Hector Mine and 2010 El Mayor–Cucapah) show a 15–60 per cent reduction in slip near the surface (depth < 2 km) relative to the slip at deeper depths (4–6 km). This significant difference between surface coseismic slip and slip at depth has been termed the shallow slip deficit (SSD). The large magnitude of this deficit has been an enigma since it cannot be explained by shallow creep during the interseismic period or by triggered slip from nearby earthquakes. One potential explanation for the SSD is that the previous geodetic inversions lack data coverage close to surface rupture such that the shallow portions of the slip models are poorly resolved and generally underestimated. In this study, we improve the static coseismic slip inversion for these three earthquakes, especially at shallow depths, by: (1) including data capturing the near-fault deformation from optical imagery and SAR azimuth offsets; (2) refining the interferometric synthetic aperture radar processing with non-boxcar phase filtering, model-dependent range corrections, more complete phase unwrapping by SNAPHU (Statistical Non-linear Approach for Phase Unwrapping) assuming a maximum discontinuity and an on-fault correlation mask; (3) using more detailed, geologically constrained fault geometries and (4) incorporating additional campaign global positioning system (GPS) data. The refined slip models result in much smaller SSDs of 3–19 per cent. We suspect that the remaining minor SSD for these earthquakes likely reflects a combination of our elastic model's inability to fully account for near-surface deformation, which will render our estimates of shallow slip minima, and potentially small amounts of interseismic fault creep or triggered slip, which could ‘make up’ a small percentages of the coseismic SSD during the interseismic period. Our results indicate that it is imperative that slip inversions include accurate measurements of near-fault surface deformation to reliably constrain spatial patterns of slip during major strike-slip earthquakes.

Bassett, D, Sandwell DT, Fialko Y, Watts AB.  2016.  Upper-plate controls on co-seismic slip in the 2011 magnitude 9.0 Tohoku-oki earthquake. Nature. 531:92-96.: Nature Publishing Group   10.1038/nature16945   Abstract

The March 2011 Tohoku-oki earthquake was only the second giant (moment magnitude Mw ≥ 9.0) earthquake to occur in the last 50 years and is the most recent to be recorded using modern geophysical techniques. Available data place high-resolution constraints on the kinematics of earthquake rupture, which have challenged prior knowledge about how much a fault can slip in a single earthquake and the seismic potential of a partially coupled megathrust interface. But it is not clear what physical or structural characteristics controlled either the rupture extent or the amplitude of slip in this earthquake. Here we use residual topography and gravity anomalies to constrain the geological structure of the overthrusting (upper) plate offshore northeast Japan. These data reveal an abrupt southwest–northeast-striking boundary in upper-plate structure, across which gravity modelling indicates a south-to-north increase in the density of rocks overlying the megathrust of 150–200 kilograms per cubic metre. We suggest that this boundary represents the offshore continuation of the Median Tectonic Line, which onshore juxtaposes geological terranes composed of granite batholiths (in the north) and accretionary complexes (in the south). The megathrust north of the Median Tectonic Line is interseismically locked, has a history of large earthquakes (18 with Mw > 7 since 1896) and produced peak slip exceeding 40 metres in the Tohoku-oki earthquake. In contrast, the megathrust south of this boundary has higher rates of interseismic creep, has not generated an earthquake with MJ > 7 (local magnitude estimated by the Japan Meteorological Agency) since 1923, and experienced relatively minor (if any) co-seismic slip in 20111. We propose that the structure and frictional properties of the overthrusting plate control megathrust coupling and seismogenic behaviour in northeast Japan.

Matthews, KJ, Mullner RD, Sandwell DT.  2016.  Oceanic microplate formation records the onset of India-Eurasia collision. Earth and Planetary Science Letters. 433:204-214.   10.1016/j.epsl.2015.10.040   AbstractWebsite

Mapping of seafloor tectonic fabric in the Indian Ocean, using high-resolution satellite-derived vertical gravity gradient data, reveals an extinct Pacific-style oceanic microplate ('Mammerickx Microplate') west of the Ninetyeast Ridge. It is one of the first Pacific-style microplates to be mapped outside the Pacific basin, suggesting that geophysical conditions during formation probably resembled those that have dominated at eastern Pacific ridges. The microplate formed at the Indian-Antarctic ridge and is bordered by an extinct ridge in the north and pseudofault in the south, whose conjugate is located north of the Kerguelen Plateau. Independent microplate rotation is indicated by asymmetric pseudofaults and rotated abyssal hill fabric, also seen in multibeam data. Magnetic anomaly picks and age estimates calculated from published spreading rates suggest formation during chron 21o (similar to 47.3 Ma). Plate reorganizations can trigger ridge propagation and microplate development, and we propose that Mammerickx Microplate formation is linked with the India-Eurasia collision (initial 'soft' collision). The collision altered the stress regime at the Indian-Antarctic ridge, leading to a change in segmentation and ridge propagation from an establishing transform. Fast Indian-Antarctic spreading that preceded microplate formation, and Kerguelen Plume activity, may have facilitated ridge propagation via the production of thin and weak lithosphere; however both factors had been present for tens of millions of years and are therefore unlikely to have triggered the event. Prior to the collision, the combination of fast spreading and plume activity was responsible for the production of a wide region of undulate seafloor to the north of the extinct ridge and 'W' shaped lineations that record back and forth ridge propagation. Microplate formation provides a precise means of dating the onset of the India-Eurasia collision, and is completely independent of and complementary to timing constraints derived from continental geology or convergence histories. (C) 2015 Elsevier B.V. All rights reserved.

2015
Tong, XP, Sandwell DT, Smith-Konter B.  2015.  An integral method to estimate the moment accumulation rate on the Creeping Section of the San Andreas Fault. Geophysical Journal International. 203:48-62.   10.1093/gji/ggv269   AbstractWebsite

Moment accumulation rate (also referred to as moment deficit rate) is a fundamental quantity for evaluating seismic hazard. The conventional approach for evaluating moment accumulation rate of creeping faults is to invert for the slip distribution from geodetic measurements, although even with perfect data these slip-rate inversions are non-unique. In this study, we show that the slip-rate versus depth inversion is not needed because moment accumulation rate can be estimated directly from surface geodetic data. We propose an integral approach that uses dense geodetic observations from Interferometric Synthetic Aperture Radar (InSAR) and the Global Positioning System (GPS) to constrain the moment accumulation rate. The moment accumulation rate is related to the integral of the product of the along-strike velocity and the distance from the fault. We demonstrate our methods by studying the Creeping Section of the San Andreas fault observed by GPS and radar interferometry onboard the ERS and ALOS satellites. Along-strike variation of the moment accumulation rate is derived in order to investigate the degree of partial locking of the Creeping Section. The central Creeping Segment has a moment accumulation rate of 0.25-3.1 x 10(15) Nm yr(-1) km(-1). The upper and lower bounds of the moment accumulation rates are derived based on the statistics of the noise. Our best-fitting model indicates that the central portion of the Creeping Section is accumulating seismic moment at rates that are about 5 per cent to 23 per cent of the fully locked Carrizo segment that will eventually be released seismically. A cumulative moment budget calculation with the historical earthquake catalogue (M > 5.5) since 1857 shows that the net moment deficit at present is equivalent to a M-w 6.3 earthquake.

Neves, MC, Cabral J, Luttrell K, Figueiredo P, Rockwell T, Sandwell D.  2015.  The effect of sea level changes on fault reactivation potential in Portugal. Tectonophysics. 658:206-220.   10.1016/j.tecto.2015.07.023   AbstractWebsite

The aim of this study is to assess the impact of sea level changes on both the stress field and the potential of fault reactivation in west Iberia. The analysis is applied to a set of five active faults distributed across Portugal, selected for representing predominant fault directions and for being seismically active. The results show that the rise of sea level since the Last Glacial Maximum has produced flexural effects with distinct impacts on different faults. The Coulomb stress changes induced by the sea level rise along the S. Marcos-Quarteira (south Portugal) and the Horseshoe (offshore SW Iberia) faults are found to be extremely small, independently of the elastic plate thickness. These faults are thus unaffected by flexural effects related to ocean loading, and are unlikely to possess any paleoseismic record of this phenomenon. In contrast, the eustatic sea level rise during the late Pleistocene could have raised the Coulomb stress by 0.5-1 MPa along the Manteigas-Vilarica-Braganca (north Portugal) and Lower Tagus Valley (Lisbon area) fault systems. Such stress perturbations are probably sufficient to impact the seismic cycle of the Manteigas-Vilarica-Braganca fault, bringing it closer to failure and possibly triggering the earthquake clusters that have been observed in previous paleoseismologic studies. (C) 2015 Elsevier B.V. All rights reserved.

O'Connor, JM, Hoernle K, Muller RD, Morgan JP, Butterworth NP, Hau F, Sandwell DT, Jokat W, Wijbrans JR, Stoffers P.  2015.  Deformation-related volcanism in the Pacific Ocean linked to the Hawaiian-Emperor bend. Nature Geoscience. 8:393-397.   10.1038/ngeo2416   AbstractWebsite

Ocean islands, seamounts and volcanic ridges are thought to form above mantle plumes. Yet, this mechanism cannot explain many volcanic features on the Pacific Ocean floor(1) and some might instead be caused by cracks in the oceanic crust linked to the reorganization of plate motions(1-3). A distinctive bend in the Hawaiian-Emperor volcanic chain has been linked to changes in the direction of motion of the Pacific Plate(4,5), movement of the Hawaiian plume(6-8), or a combination of both(9). However, these links are uncertain because there is no independent record that precisely dates tectonic events that affected the Pacific Plate. Here we analyse the geochemical characteristics of lava samples collected from the Musicians Ridges, lines of volcanic seamounts formed close to the Hawaiian-Emperor bend. We find that the geochemical signature of these lavas is unlike typical ocean island basalts and instead resembles mid-ocean ridge basalts. We infer that the seamounts are unrelated to mantle plume activity and instead formed in an extensional setting, due to deformation of the Pacific Plate. Ar-40/Ar-39 dating reveals that the Musicians Ridges formed during two time windows that bracket the time of formation of the Hawaiian-Emperor bend, 53-52 and 48-47 million years ago. We conclude that the Hawaiian-Emperor bend was formed by plate-mantle reorganization, potentially triggered by a series of subduction events at the Pacific Plate margins.

Garcia, ES, Sandwell DT, Luttrell KM.  2015.  An iterative spectral solution method for thin elastic plate flexure with variable rigidity. Geophysical Journal International. 200:1010-1026.   10.1093/gji/ggu449   AbstractWebsite

Thin plate flexure theory provides an accurate model for the response of the lithosphere to vertical loads on horizontal length scales ranging from tens to hundreds of kilometres. Examples include flexure at seamounts, fracture zones, sedimentary basins and subduction zones. When applying this theory to real world situations, most studies assume a locally uniform plate thickness to enable simple Fourier transform solutions. However, in cases where the amplitude of the flexure is prominent, such as subduction zones, or there are rapid variations in seafloor age, such as fracture zones, these models are inadequate. Here we present a computationally efficient algorithm for solving the thin plate flexure equation for non-uniform plate thickness and arbitrary vertical load. The iterative scheme takes advantage of the 2-D fast Fourier transform to perform calculations in both the spatial and spectral domains, resulting in an accurate and computationally efficient solution. We illustrate the accuracy of the method through comparisons with known analytic solutions. Finally, we present results from three simple models demonstrating the differences in trench outer rise flexure when 2-D variations in plate rigidity and applied bending moment are taken into account. Although we focus our analysis on ocean trench flexure, the method is applicable to other 2-D flexure problems having spatial rigidity variations such as seamount loading of a thermally eroded lithosphere or flexure across the continental-oceanic crust boundary.

2014
Malinverni, ES, Sandwell DT, Tassetti AN, Cappelletti L.  2014.  InSAR decorrelation to assess and prevent volcanic risk. European Journal of Remote Sensing. 47:537-556.   10.5721/EuJRS20144730   AbstractWebsite

SAR can be invaluable describing pre-eruption surface deformation and improving the understanding of volcanic processes. This work studies correlation of pairs of SAR images focusing on the influence of surface, climate conditions and acquisition band. Chosen L-band and C-band images (ENVISAT, ERS and ALOS) cover most of the Yellowstone caldera (USA) over a span of 4 years, sampling all the seasons. Interferograms and correlation maps are generated and studied in relation to snow depth and temperature. To isolate temporal decorrelation pairs of images with the shortest baseline are chosen. Results show good performance during winter, bad attitude towards wet snow and good coherence during summer with L-band performing better over vegetation.

Trugman, DT, Borsa AA, Sandwell DT.  2014.  Did stresses from the Cerro Prieto Geothermal Field influence the El Mayor-Cucapah rupture sequence? Geophysical Research Letters. 41:8767-8774.   10.1002/2014gl061959   AbstractWebsite

The M-w 7.2 El Mayor-Cucapah (EMC) earthquake ruptured a complex fault system in northern Baja California that was previously considered inactive. The Cerro Prieto Geothermal Field (CPGF), site of the world's second largest geothermal power plant, is located approximately 15km to the northeast of the EMC hypocenter. We investigate whether anthropogenic fluid extraction at the CPGF caused a significant perturbation to the stress field in the EMC rupture zone. We use Advanced Land Observing Satellite interferometric synthetic aperture radar data to develop a laterally heterogeneous model of fluid extraction at the CPGF and estimate that this extraction generates positive Coulomb stressing rates of order 15 kPa/yr near the EMC hypocenter, a value which exceeds the local tectonic stressing rate. Although we cannot definitively conclude that production at the CPGF triggered the EMC earthquake, its influence on the local stress field is substantial and should not be neglected in local seismic hazard assessments.

Lindsey, EO, Fialko Y, Bock Y, Sandwell DT, Bilham R.  2014.  Localized and distributed creep along the southern San Andreas Fault. Journal of Geophysical Research-Solid Earth. 119:7909-7922.   10.1002/2014jb011275   AbstractWebsite

We investigate the spatial pattern of surface creep and off-fault deformation along the southern segment of the San Andreas Fault using a combination of multiple interferometric synthetic aperture radar viewing geometries and survey-mode GPS occupations of a dense array crossing the fault. Radar observations from Envisat during the period 2003-2010 were used to separate the pattern of horizontal and vertical motion, providing a high-resolution image of uplift and shallow creep along the fault trace. The data reveal pervasive shallow creep along the southernmost 50 km of the fault. Creep is localized on a well-defined fault trace only in the Mecca Hills and Durmid Hill areas, while elsewhere creep appears to be distributed over a 1-2 km wide zone surrounding the fault. The degree of strain localization is correlated with variations in the local fault strike. Using a two-dimensional boundary element model, we show that stresses resulting from slip on a curved fault can promote or inhibit inelastic failure within the fault zone in a pattern matching the observations. The occurrence of shallow, localized interseismic fault creep within mature fault zones may thus be partly controlled by the local fault geometry and normal stress, with implications for models of fault zone evolution, shallow coseismic slip deficit, and geologic estimates of long-term slip rates. Key PointsShallow creep is pervasive along the southernmost 50 km of the San Andreas FaultCreep is localized only along transpressional fault segmentsIn transtensional areas, creep is distributed over a 1-2 km wide fault zone

Sandwell, DT, Müller DR, Smith WHF, Garcia E, Francis R.  2014.  New global marine gravity model from CryoSat-2 and Jason-1 reveals buried tectonic structure. Science. 346:65-67.   10.1126/science.1258213   AbstractWebsite

Gravity models are powerful tools for mapping tectonic structures, especially in the deep ocean basins where the topography remains unmapped by ships or is buried by thick sediment. We combined new radar altimeter measurements from satellites CryoSat-2 and Jason-1 with existing data to construct a global marine gravity model that is two times more accurate than previous models. We found an extinct spreading ridge in the Gulf of Mexico, a major propagating rift in the South Atlantic Ocean, abyssal hill fabric on slow-spreading ridges, and thousands of previously uncharted seamounts. These discoveries allow us to understand regional tectonic processes and highlight the importance of satellite-derived gravity models as one of the primary tools for the investigation of remote ocean basins.

Sandwell, DT, Smith WHF.  2014.  Slope correction for ocean radar altimetry. Journal of Geodesy. 88:765-771.   10.1007/s00190-014-0720-1   AbstractWebsite

We develop a slope correction model to improve the accuracy of mean sea surface topography models as well as marine gravity models. The correction is greatest above ocean trenches and large seamounts where the slope of the geoid exceeds 100 rad. In extreme cases, the correction to the mean sea surface height is 40 mm and the correction to the along-track altimeter slope is 1-2 rad which maps into a 1-2 mGal gravity error. Both corrections are easily applied using existing grids of sea surface slope from satellite altimetry.

Smith-Konter, BR, Thornton GM, Sandwell DT.  2014.  Vertical crustal displacement due to interseismic deformation along the San Andreas fault: Constraints from tide gauges. Geophysical Research Letters. 41:3793-3801.   10.1002/2014gl060091   AbstractWebsite

Interseismic motion along complex strike-slip fault systems such as the San Andreas Fault System (SAFS) can produce vertical velocities that are similar to 10 times smaller than horizontal velocities, caused by along-strike variations in fault orientation and locking depth. Tide gauge stations provide a long (50-100 year) recording history of sea level change due to several oceanographic and geologic processes, including vertical earthquake cycle deformation. Here we compare relative sea level displacements with predictions from a 3-D elastic/viscoelastic earthquake cycle model of the SAFS. We find that models with lithospheric structure reflecting a thick elastic plate (> 50km) and moderate viscosities produce vertical motions in surprisingly good agreement with the relative tide gauge uplift rates. These results suggest that sea level variations along the California coastline contain a small but identifiable tectonic signal reflecting the flexure of the elastic plate caused by bending moments applied at the ends of locked faults.

Gonzalez-Ortega, A, Fialko Y, Sandwell D, Nava-Pichardo FA, Fletcher J, Gonzalez-Garcia J, Lipovsky B, Floyd M, Funning G.  2014.  El Mayor-Cucapah ( M-w 7.2) earthquake: Early near-field postseismic deformation from InSAR and GPS observations. Journal of Geophysical Research-Solid Earth. 119:1482-1497.   10.1002/2013jb010193   AbstractWebsite

El Mayor-Cucapah earthquake occurred on 4 April 2010 in northeastern Baja California just south of the U.S.-Mexico border. The earthquake ruptured several previously mapped faults, as well as some unidentified ones, including the Pescadores, Borrego, Paso Inferior and Paso Superior faults in the Sierra Cucapah, and the Indiviso fault in the Mexicali Valley and Colorado River Delta. We conducted several Global Positioning System (GPS) campaign surveys of preexisting and newly established benchmarks within 30km of the earthquake rupture. Most of the benchmarks were occupied within days after the earthquake, allowing us to capture the very early postseismic transient motions. The GPS data show postseismic displacements in the same direction as the coseismic displacements; time series indicate a gradual decay in postseismic velocities with characteristic time scales of 669days and 203days, assuming exponential and logarithmic decay, respectively. We also analyzed interferometric synthetic aperture radar (InSAR) data from the Envisat and ALOS satellites. The main deformation features seen in the line-of-sight displacement maps indicate subsidence concentrated in the southern and northern parts of the main rupture, in particular at the Indiviso fault, at the Laguna Salada basin, and at the Paso Superior fault. We show that the near-field GPS and InSAR observations over a time period of 5months after the earthquake can be explained by a combination of afterslip, fault zone contraction, and a possible minor contribution of poroelastic rebound. Far-field data require an additional mechanism, most likely viscoelastic relaxation in the ductile substrate.

Tong, XP, Smith-Konter B, Sandwell DT.  2014.  Is there a discrepancy between geological and geodetic slip rates along the San Andreas Fault System? Journal of Geophysical Research-Solid Earth. 119:2518-2538.   10.1002/2013jb010765   AbstractWebsite

Previous inversions for slip rate along the San Andreas Fault System (SAFS), based on elastic half-space models, show a discrepancy between the geologic and geodetic slip rates along a few major fault segments. In this study, we use an earthquake cycle model representing an elastic plate over a viscoelastic half-space to demonstrate that there is no significant discrepancy between long-term geologic and geodetic slip rates. The California statewide model includes 41 major fault segments having steady slip from the base of the locked zone to the base of the elastic plate and episodic shallow slip based on known historical ruptures and geologic recurrence intervals. The slip rates are constrained by 1981 secular velocity measurements from GPS and L-band intereferometric synthetic aperture radar. A model with a thick elastic layer (60 km) and half-space viscosity of 10(19)Pa s is preferred because it produces the smallest misfit to both the geologic and the geodetic data. We find that the geodetic slip rates from the thick plate model agrees to within the bounds of the geologic slip rates, while the rates from the elastic half-space model disagree on specific important fault segments such as the Mojave and the North Coast segment of the San Andreas Fault. The viscoelastic earthquake cycle models have generally higher slip rates than the half-space model because most of the faults along the SAFS are late in the earthquake cycle, so today they are moving slower than the long-term cycle-averaged velocity as governed by the viscoelastic relaxation process.

Garcia, ES, Sandwell DT, Smith WHF.  2014.  Retracking CryoSat-2, Envisat and Jason-1 radar altimetry waveforms for improved gravity field recovery. Geophysical Journal International. 196:1402-1422.   10.1093/gji/ggt469   AbstractWebsite

Improving the accuracy of the marine gravity field requires both improved altimeter range precision and dense track coverage. After a hiatus of more than 15 yr, a wealth of suitable data is now available from the CryoSat-2, Envisat and Jason-1 satellites. The range precision of these data is significantly improved with respect to the conventional techniques used in operational oceanography by retracking the altimeter waveforms using an algorithm that is optimized for the recovery of the short-wavelength geodetic signal. We caution that this new approach, which provides optimal range precision, may introduce large-scale errors that would be unacceptable for other applications. In addition, CryoSat-2 has a new synthetic aperture radar (SAR) mode that should result in higher range precision. For this new mode we derived a simple, but approximate, analytic model for the shape of the SAR waveform that could be used in an iterative least-squares algorithm for estimating range. For the conventional waveforms, we demonstrate that a two-step retracking algorithm that was originally designed for data from prior missions (ERS-1 and Geosat) also improves precision on all three of the new satellites by about a factor of 1.5. The improved range precision and dense coverage from CryoSat-2, Envisat and Jason-1 should lead to a significant increase in the accuracy of the marine gravity field.

2013
Tong, X, Sandwell DT, Smith-Konter B.  2013.  High-resolution interseismic velocity data along the San Andreas Fault from GPS and InSAR. Journal of Geophysical Research-Solid Earth. 118:369-389.   10.1029/2012jb009442   AbstractWebsite

We compared four interseismic velocity models of the San Andreas Fault based on GPS observations. The standard deviations of the predicted secular velocity from the four models are larger north of the San Francisco Bay area, near the creeping segment in Central California, and along the San Jacinto Fault and the East California Shear Zone in Southern California. A coherence spectrum analysis of the secular velocity fields indicates relatively high correlation among the four models at longer wavelengths (>15-40 km), with lower correlation at shorter wavelengths. To improve the short-wavelength accuracy of the interseismic velocity model, we integrated interferometric synthetic aperture radar (InSAR) observations, initially from Advanced Land Observing Satellite (ALOS) ascending data (spanning from the middle of 2006 to the end of 2010, totaling more than 1100 interferograms), with GPS observations using a Sum/Remove/Filter/Restore approach. The final InSAR line of sight data match the point GPS observations with a mean absolute deviation of 1.5 mm/yr. We systematically evaluated the fault creep rates along major faults of the San Andreas Fault and compared them with creepmeters and alignment array data compiled in Uniform California Earthquake Rupture Forecast, Version 2 (UCERF2). Moreover, this InSAR line of sight dataset can constrain rapid velocity gradients near the faults, which are critical for understanding the along-strike variations in stress accumulation rate and associated earthquake hazard. Citation: Tong, X., D. T. Sandwell, and B. Smith-Konter (2013), High-resolution interseismic velocity data along the San Andreas Fault from GPS and InSAR, J. Geophys. Res. Solid Earth, 118, 369-389, doi:10.1029/2012JB009442.

Kaneko, Y, Fialko Y, Sandwell DT, Tong X, Furuya M.  2013.  Interseismic deformation and creep along the central section of the North Anatolian Fault (Turkey): InSAR observations and implications for rate-and-state friction properties. Journal of Geophysical Research-Solid Earth. 118:316-331.   10.1029/2012jb009661   AbstractWebsite

We present high-resolution measurements of interseismic deformation along the central section of the North Anatolian Fault (NAF) in Turkey using interferometric synthetic aperture radar data from the Advanced Land Observing Satellite and Envisat missions. We generated maps of satellite line-of-sight velocity using five ascending Advanced Land Observing Satellite tracks and one descending Envisat track covering the NAF between 31.2 degrees E and 34.3 degrees E. The line-of-sight velocity reveals discontinuities of up to similar to 5 mm/yr across the Ismetpasa segment of the NAF, implying surface creep at a rate of similar to 9 mm/yr; this is a large fraction of the inferred slip rate of the NAF (21-25 mm/yr). The lateral extent of significant surface creep is about 75 km. We model the inferred surface velocity and shallow fault creep using numerical simulations of spontaneous earthquake sequences that incorporate laboratory-derived rate and state friction. Our results indicate that frictional behavior in the Ismetpasa segment is velocity strengthening at shallow depths and transitions to velocity weakening at a depth of 3-6 km. The inferred depth extent of shallow fault creep is 5.5-7 km, suggesting that the deeper locked portion of the partially creeping segment is characterized by a higher stressing rate, smaller events, and shorter recurrence interval. We also reproduce surface velocity in a locked segment of the NAF by fault models with velocity-weakening conditions at shallow depth. Our results imply that frictional behavior in a shallow portion of major active faults with little or no shallow creep is mostly velocity weakening. Citation: Kaneko, Y., Y. Fialko, D. T. Sandwell, X. Tong, and M. Furuya (2013), Interseismic deformation and creep along the central section of the North Anatolian Fault (Turkey): InSAR observations and implications for rate-and-state friction properties, J. Geophys. Res. Solid Earth, 118, 316-331, doi: 10.1029/2012JB009661.

Crowell, BW, Bock Y, Sandwell DT, Fialko Y.  2013.  Geodetic investigation into the deformation of the Salton Trough. Journal of Geophysical Research-Solid Earth. 118:5030-5039.   10.1002/jgrb.50347   AbstractWebsite

The Salton Trough represents a complex transition between the spreading center in Baja California and the strike-slip San Andreas fault system and is one of the most active zones of deformation and seismicity in California. We present a high-resolution interseismic velocity field for the Salton Trough derived from 74 continuous GPS sites and 109 benchmarks surveyed in three GPS campaigns during 2008-2009 and previous surveys between 2000 and 2005. We also investigate small-scale deformation by removing the regional velocity field predicted by an elastic block model for Southern California from the observed velocities. We find a total extension rate of 11mm/yr from the Mesquite Basin to the southern edge of the San Andreas Fault, coupled with 15mm/yr of left-lateral shear, the majority of which is concentrated in the southern Salton Sea and Obsidian Buttes and is equivalent to 17mm/yr oriented in the direction of the San Andreas Fault. Differential shear strain is exclusively localized in the Brawley Seismic Zone, and dilatation rate indicates widespread extension throughout the zone. In addition, we infer clockwise rotation of 10 degrees/Ma, consistent with northwestward propagation of the Brawley Seismic Zone over geologic time.