Mantle Downwelling beneath the Australian-Antarctic Discordance Zone - Evidence from Geoid Height Versus Topography

Citation:
Marks, KM, Sandwell DT, Vogt PR, Hall SA.  1991.  Mantle Downwelling beneath the Australian-Antarctic Discordance Zone - Evidence from Geoid Height Versus Topography. Earth and Planetary Science Letters. 103:325-338.

Date Published:

Apr

Keywords:

chemistry, compensation, convection, depth anomalies, gravity-anomalies, indian-ocean, ridge, Seasat, swells, undulations

Abstract:

The Australian-Antarctic discordance zone (AAD) is an anomalously deep and rough segment of the Southeast Indian Ridge between 120-degrees and 128-degrees-E. A large, negative (deeper than predicted) depth anomaly is centered on the discordance, and a geoid low is evident upon removal of a low-order geoid model and the geoid height-age relation. We investigate two models that may explain these anomalies: a deficiency in ridge-axis magma supply that produces thin oceanic crust (i.e. shallow Airy compensation), and a downwelling and/or cooler mantle beneath the AAD that results in deeper convective-type compensation. To distinguish between these models, we have calculated the ratio of geoid height to topography from the slope of a best line fit by functional analysis (i.e. non-biased linear regression), a method that minimizes both geoid height and topography residuals. Geoid/topography ratios of 2.1 +/- 0.9 m/km for the entire study area (38-degrees-60-degrees-S, 105-degrees-140-degrees-E), 2.3 +/- 1.8 m/km for a subset comprising crust less-than-or-equal-to 25 Ma, and 2.7 +/- 2.0 m/km for a smaller area centered on the AAD were obtained. These ratios are significantly larger than predicted for thin oceanic crust (0.4 m/km), and 2.7 m/km is consistent with downwelling convection beneath young lithosphere. Average compensation depths of 27, 29, and 34 km, respectively, estimated from these ratios suggest a mantle structure that deepens towards the AAD. The deepest compensation (34 km) of the AAD is below the average depth of the base of the young lithosphere (approximately 30 km), and a downwelling of asthenospheric material is implied. The observed geoid height-age slope over the discordance is unusually gradual at -0.133 m/m.y. We calculate that an upper mantle 170-degrees-C cooler and 0.02 g/cm3 denser than normal can explain the shallow slope. Unusually fast shear velocities in the upper 200 km of mantle beneath the discordance, and major-element geochemical trends consistent with small amounts of melting at shallow depths, provide strong evidence for cooler temperatures beneath the AAD.

Notes:

n/a

Website

DOI:

10.1016/0012-821x(91)90170-m