Lithospheric Flexure on Venus

Johnson, CL, Sandwell DT.  1994.  Lithospheric Flexure on Venus. Geophysical Journal International. 119:627-647.

Date Published:



axisymmetrical, classification, coronae, elastic, features, global distribution, heat-flow, lithosphere, magellan, morphology, oceanic lithosphere, origin, rheology, topographic flexure, venusian, viscous, volcanism


Topographic flexural signatures on Venus are generally associated with the outer edges of coronae, with some chasmata and with rift zones. Using Magellan altimetry profiles and grids of venusian topography, we identified 17 potential flexure sites. Both 2-D cartesian, and 2-D axisymmetric, thin-elastic plate models were used to establish the flexural parameter and applied load/bending moment. These parameters can be used to infer the thickness, strength and possibly the dynamics of the venusian lithosphere. Numerical simulations show that the 2-D model provides an accurate representation of the flexural parameter as long as the radius of the feature is several times the flexural parameter. However, an axisymmetric model must be used to obtain a reliable estimate of load/bending moment. 12 of the 17 areas were modelled with a 2-D thin elastic plate model, yielding best-fit effective elastic thicknesses in the range 12 to 34 km. We find no convincing evidence for flexure around smaller coronae, though five possible candidates have been identified. These five features show circumferential topographic signatures which, if interpreted as flexure, yield mean elastic thicknesses ranging from 6 to 22 km. We adopt a yield strength envelope for the venusian lithosphere based on a dry olivine rheology and on the additional assumption that strain rates on Venus are similar to, or lower than, strain rates on Earth. Many of the flexural signatures correspond to relatively high plate-bending curvatures so the upper and lower parts of the lithosphere should theoretically exhibit brittle fracture and flow, respectively. For areas where the curvatures are not too extreme, the estimated elastic thickness is used to estimate the larger mechanical thickness of the lithosphere. The large amplitude flexures in Aphrodite Terra predict complete failure of the plate, rendering mechanical thickness estimates from these features unreliable. One smaller corona also yielded an unreliable mechanical thickness estimate based on the marginal quality of the profile data. Reliable mechanical thicknesses found by forward modelling in this study are 21 km-37 km, significantly greater than the 13 km-20 km predictions based on heat-flow scaling arguments and chondritic thermal models. If the modelled topography is the result of lithospheric flexure, then our results for mechanical thickness, combined with the lack of evidence for flexure around smaller features, are consistent with a venusian lithosphere somewhat thicker than predicted. Dynamical models for bending of a viscous lithosphere at low strain rates predict a thick lithosphere, also consistent with low temperature gradients. Recent laboratory measurements indicate that dry crustal materials are much stronger than previously believed. Corresponding time-scales for gravitational relaxation are 10(8)-10(9) yr, making gravitational relaxation an unlikely mechanism for the generation of the few inferred flexural features. If dry olivine is also found to be stronger than previously believed, the mechanical thickness estimates for Venus will be reduced, and will be more consistent with the predictions of global heat scaling models.