Constraints on 3-D stress in the crust from support of mid-ocean ridge topography

Luttrell, K, Sandwell D.  2012.  Constraints on 3-D stress in the crust from support of mid-ocean ridge topography. Journal of Geophysical Research-Solid Earth. 117

Date Published:



bathymetry, evolution, fracture-zones, isostasy, lithosphere, oceanic transform faults, patterns, plate boundary, sea-floor, spreading rate


The direction of crustal stresses acting at mid-ocean ridges is well characterized, but the magnitude of these stresses is poorly constrained. We present a method by which the absolute magnitude of these stresses may be constrained using seafloor topography and gravity. The topography is divided into a short-wavelength portion, created by rifting, magmatism, and transform faulting, and a long-wavelength portion associated with the cooling and subsidence of the oceanic lithosphere. The short-wavelength surface and Moho topography are used to calculate the spatially varying 3-D stress tensor in the crust by assuming that in creating this topography, the deviatoric stress reached the elastic-plastic limiting stress; the Moho topography is constrained by short-wavelength gravity variations. Under these assumptions, an incompressible elastic material gives the smallest plastic failure stress associated with this topography. This short-wavelength topographic stress generally predicts the wrong style of earthquake focal mechanisms at ridges and transform faults. However, the addition of an in-plane regional stress field is able to reconcile the combined crustal stress with both the ridge and transform focal mechanisms. By adjusting the magnitude of the regional stress, we determine a lower bound for in situ ridge-perpendicular extension of 25-40 MPa along the slow spreading mid-Atlantic ridge, 40-50 MPa along the ultra-slow spreading ridges in the western Indian Ocean, and 10-30 MPa along the fast spreading ridges of the southeastern Indian and Pacific Oceans. Furthermore, we constrain the magnitude of ridge-parallel extension to be between 4 and 8 MPa in the Atlantic Ocean, between -1 and 7 MPa in the western Indian Ocean, and between -1 and 3 MPa in the southeastern Indian and Pacific Oceans. These observations suggest that a deep transform valley is an essential feature of the ridge-transform spreading center.






Scripps Publication ID: