Export 102 results:
Sort by: Author Title Type [ Year  (Desc)]
Gopalakrishnan, G, Hoteit I, Cornuelle BD, Rudnick DL.  2019.  Comparison of 4DVAR and EnKF state estimates and forecasts in the Gulf of Mexico. Quarterly Journal of the Royal Meteorological Society. 145:1354-1376.   10.1002/qj.3493   AbstractWebsite

An experiment is conducted to compare four-dimensional variational (4DVAR) and ensemble Kalman filter (EnKF) assimilation systems and their predictability in the Gulf of Mexico (GoM) using the Massachusetts Institute of Technology general circulation model (MITgcm). The quality of the ocean-state estimates, forecasts, and the contribution of ensemble prediction are evaluated. The MITgcm-Estimating the Circulation and Climate of the Ocean (ECCO) 4DVAR (MITgcm-ECCO) and the MITgcm-Data Assimilation Research Testbed (DART) EnKF (MITgcm-DART) systems were used to compute two-month hindcasts (March-April, 2010) by assimilating satellite-derived along-track sea-surface height (SSH) and gridded sea-surface temperature (SST) observations. The estimates from both methods at the end of the hindcast period were then used to initialize forecasts for two months (May-June, 2010). This period was selected because a loop current (LC) eddy (Eddy Franklin: Eddy-F) detachment event occurred at the end of May 2010, immediately after the Deepwater Horizon (DwH) oil spill. Despite some differences between the setups, both systems produce analyses and forecasts of comparable quality and both solutions significantly outperformed model persistence. A reference forecast initialized from the 1/12 degrees Hybrid Coordinate Ocean Model (HYCOM)/NCODA global analysis also performed well. The EnKF experiments for sensitivity to filter parameters showed enhanced predictability when using more ensemble members and stronger covariance localization, but not for larger inflation. The EnKF experiments varying the number of assimilation cycles showed enhanced short-term (long-term) predictability with fewer (more) assimilation cycles. Additional hindcast and forecast experiments at other times of significant LC evolution showed mixed performance of both systems, which depends strongly on the background state of the GoM circulation. The present work demonstrates a practical application of both assimilation methods for the GoM and compares them in a limited number of realizations. The overall conclusion showing improved short-term (long-term) predictability for EnKF (4DVAR) carries an important caveat that the results from this study are specific to a few 4DVAR and EnKF LC eddy separation experiments in the GoM and cannot be generalized to conclude the relative performance of both methods, especially in other applications. However, some of the concepts and methods should carry over to other applications.

Zaba, K, Rudnick DL, Cornuelle B, Gopalakrishnan G, Mazloff M.  2018.  Annual and interannual variability in the California Current System: Comparison of an ocean state estimate with a network of underwater gliders. Journal of Physical Oceanography.   10.1175/jpo-d-18-0037.1   Abstract

A data-constrained state estimate of the southern California Current System (CCS) is presented and compared against withheld CalCOFI data and assimilated glider data over the years 2007-2017. The objective of this comparison is to assess the ability of the California State Estimate (CASE) to reproduce the key physical features of the CCS mean state, annual cycles, and interannual variability along the three sections of the California Underwater Glider Network (CUGN). The assessment focuses on several oceanic metrics deemed most important for characterizing physical variability in the CCS: 50 m potential temperature, 80 m salinity, and 26 kg/m3 isopycnal depth and salinity. In the time-mean, the CASE reproduces large-scale thermohaline and circulation structures, including observed temperature gradients, shoaling isopycnals, and the locations and magnitudes of the equatorward California Current and poleward California Undercurrent. With respect to the annual cycle, the CASE captures the phase and, to a lesser extent, the magnitude of upper ocean warming and stratification in late summer to early fall and of isopycnal heave due to springtime upwelling. The CASE also realistically captures near-surface diapycnal mixing during upwelling season and the semiannual cycle of the California Undercurrent. In terms of interannual variability, the most pronounced signals are the persistent warming and downwelling anomalies of 2014-2016 and a positive isopycnal salinity anomaly that peaked with the 2015-2016 El Niño.

Rudnick, DL, Sherman JT, Wu AP.  2018.  Depth-average velocity from Spray underwater gliders. Journal of Atmospheric and Oceanic Technology. 35:1665-1673.   10.1175/jtech-d-17-0200.1   AbstractWebsite

The depth-average velocity is routinely calculated using data from underwater gliders. The calculation is a dead reckoning, where the difference between the glider's velocity over ground and its velocity through water yields the water velocity averaged over the glider's dive path. Given the accuracy of global positioning system navigation and the typical 3-6-h dive cycle, the accuracy of the depth-average velocity is overwhelmingly dependent on the accurate estimation of the glider's velocity through water. The calculation of glider velocity through water for the Spray underwater glider is described. The accuracy of this calculation is addressed using a method similar to that used with shipboard acoustic Doppler current profilers, where water velocity is compared before and after turns to determine a gain to apply to glider velocity through water. Differences of this gain from an ideal value of one are used to evaluate accuracy. Sustained glider observations of several years off California and Palau consisted of missions involving repeated straight sections, producing hundreds of turns. The root-mean-square accuracy of depth-average velocity is estimated to be in the range of 0.01-0.02 m s(-1), consistent with inferences from the early days of underwater glider design.

Chao, Y, Farrara JD, Zhang HC, Armenta KJ, Centurioni L, Chavez F, Girton JB, Rudnick D, Walter RK.  2018.  Development, implementation, and validation of a California coastal ocean modeling, data assimilation, and forecasting system. Deep-Sea Research Part Ii-Topical Studies in Oceanography. 151:49-63.   10.1016/j.dsr2.2017.04.013   AbstractWebsite

A three-dimensional, near real-time data-assimilative modeling system for the California coastal ocean is presented. The system consists of a Regional Ocean Modeling System (ROMS) forced by the North American Mesoscale Forecast System (NAM). The ocean model has a horizontal resolution of approximately three kilometers and utilizes a multi-scale three-dimensional variational (3DVAR) data assimilation methodology. The system is run in near real-time to produce a nowcast every six hours and a 72-hour forecast every day. The performance of this nowcast system is presented using results from a six-year period of 2009-2015. The ROMS results are first compared with the assimilated data as a consistency check. RMS differences in observed satellite infrared sea surface temperatures (SST) and vertical profiles of temperature between observations and ROMS nowcasts were found to be mostly less than 0.5 degrees C, while the RMS differences in vertical profiles of salinity between observations and ROMS nowcasts were found to be 0.09 or less. The RMS differences in SST show a distinct seasonal cycle that mirrors the number of observations available: the nowcast is less skillful with larger RMS differences during the summer months when there are less infrared SST observations due to the presence of low-level clouds. The larger differences during summer were found primarily along the northern and central coasts in upwelling regions where strong gradients exist between colder upwelled waters nearshore and warmer offshore waters. RMS differences between HF radar surface current observations and ROMS nowcasts were approximately 7-8 cm s-(1), which is about 30% of the time mean current speeds in this region. The RMS differences in sea surface height (SSH) between the AVISO (Archiving, Validation and Interpretation of Satellite Oceanographic) altimetric satellite observations and ROMS nowcasts were about 2 cm. In addition, the system realistically reproduces the interannual variability in temperatures at the M1 mooring (122.03 degrees W, 36.75 degrees N) in Monterey Bay, including the strong warming of the California coastal ocean during 2014. The ROMS nowcasts were then validated against independent observations. A comparison of the ROMS nowcast with independent profile observations of temperature and salinity shows RMS differences of 0.7 to 0.92 degrees C and 0.13 to 0.17, which are larger (by up to a factor of 2) than the differences found in the comparisons with assimilated data. Validation of the depth-averaged currents derived from Spray gliders shows that the flow patterns associated with California Current and California Undercurrent/Davidson current systems and their seasonal variations are qualitatively reproduced by the ROMS modeling system. Lastly, the impact of two recent upgrades to the system is quantified. Switching the lateral boundary conditions from a U.S. west coast regional model to the global HYCOM (HYbrid Coordinate Ocean Model) model results in an improvement in the simulation of the seasonal and interannual variations in the SSH, especially south of Pt. Conception (120.47 degrees W, 34.45 degrees N). The assimilation of altimetric satellite SSH data also results in an improvement in the model surface currents when compared to independent surface drifter observations.

Lee, CM, Rudnick DL.  2018.  Underwater Gliders. Observing the Oceans in Real Time. ( Venkatesan R, Tandon A, D'Asaro E, Atmanand MA, Eds.).:123-139., Cham: Springer International Publishing   10.1007/978-3-319-66493-4_7   Abstract

This chapter focuses on underwater gliders, placing them in the context of the recent surge in autonomous observing technologies, reviewing the underlying design philosophy and providing a brief history of their development. Gliders resolve scales of kilometers and hours, with the seasonal to annual endurance required to characterize climate variability and capture episodic events – a region of the spatial-temporal sampling spectrum that had previously been challenging to address. Examples of gliders applied to sustained studies of large-scale variability in boundary regions, to physical and biological/biogeochemical process studies, and to studies of polar regions illustrate strategies for efficient use that capitalize on the platform’s strengths. Although gliders are a mature platform with demonstrated scientific output, improvements to reliability, ease of use, and range would have large impacts on platform efficiency, enabling broader adoption and application to a wider range of scientific and operational tasks.

Itoh, S, Rudnick DL.  2017.  Fine-scale variability of isopycnal salinity in the California Current System. Journal of Geophysical Research-Oceans. 122:7066-7081.   10.1002/2017jc013080   AbstractWebsite

This paper examines the fine-scale structure and seasonal fluctuations of the isopycnal salinity of the California Current System from 2007 to 2013 using temperature and salinity profiles obtained from a series of underwater glider surveys. The seasonal mean distributions of the spectral power of the isopycnal salinity gradient averaged over submesoscale (12-30 km) and mesoscale (30-60 km) ranges along three survey lines off Monterey Bay, Point Conception, and Dana Point were obtained from 298 transects. The mesoscale and submesoscale variance increased as coastal upwelling caused the isopycnal salinity gradient to steepen. Areas of elevated variance were clearly observed around the salinity front during the summer then spread offshore through the fall and winter. The high fine-scale variances were observed typically above 25.8 kg m(-3) and decreased with depth to a minimum at around 26.3 kg m(-3). The mean spectral slope of the isopycnal salinity gradient with respect to wavenumber was 0.19 +/- 0.27 over the horizontal scale of 12-60 km, and 31%-35% of the spectra had significantly positive slopes. In contrast, the spectral slope over 12-30 km was mostly flat, with mean values of -0.025 +/- 0.32. An increase in submesoscale variability accompanying the steepening of the spectral slope was often observed in inshore areas; e.g., off Monterey Bay in winter, where a sharp front developed between the California Current and the California Under Current, and the lower layers of the Southern California Bight, where vigorous interaction between a synoptic current and bottom topography is to be expected.

Chao, Y, Farrara JD, Bjorkstedt E, Chai F, Chavez F, Rudnick DL, Enright W, Fisher JL, Peterson WT, Welch GF, Davis CO, Dugdale RC, Wilkerson FP, Zhang HC, Zhang YL, Ateljevich E.  2017.  The origins of the anomalous warming in the California coastal ocean and San Francisco Bay during 2014-2016. Journal of Geophysical Research-Oceans. 122:7537-7557.   10.1002/2017jc013120   AbstractWebsite

During 2014 exceptionally warm water temperatures developed across a wide area off the California coast and within San Francisco Bay (SFB) and persisted into 2016. Observations and numerical model output are used to document this warming and determine its origins. The coastal warming was mostly confined to the upper 100 m of the ocean and was manifested strongly in the two leading modes of upper ocean (0-100 m) temperature variability in the extratropical eastern Pacific. Observations suggest that the coastal warming in 2014 propagated into nearshore regions from the west while later indicating a warming influence that propagated from south to north into the region associated with the 2015-2016 El Nino event. An analysis of the upper ocean (0-100 m) heat budget in a Regional Ocean Modeling System (ROMS) simulation confirmed this scenario. The results from a set of sensitivity runs with the model in which the lateral boundary conditions varied supported the conclusions drawn from the heat budget analysis. Concerning the warming in the SFB, an examination of the observations and the heat budget in an unstructured-grid numerical model simulation suggested that the warming during the second half of 2014 and early 2016 originated in the adjacent California coastal ocean and propagated through the Golden Gate into the Bay. The finding that the coastal and Bay warming are due to the relatively slow propagation of signals from remote sources raises the possibility that such warming events may be predictable many months or even several seasons in advance. Plain Language Summary The origins of the exceptionally warm water temperatures that developed off the California coast and in San Francisco Bay were studied using observations and computer model experiments. The coastal warming was mostly confined to the upper ocean. The coastal warming in 2014 was found to have moved into coastal waters from further offshore in the northeastern Pacific. Warming persisted into 2015-2016 as a warming influence from the south associated with the 2015-16 El Nino event in the tropical Pacific Ocean. The model experiments suggested confirmed that propagation of the warming signals from the west and north into the California coastal ocean and suggested that the warming in San Francisco Bay was found to have originated primarily in the adjacent California coastal ocean. The finding that the coastal and Bay warming are due to the relatively slow propagation of signals from remote sources raises the possibility that such warming events may be predictable many months or even several seasons in advance.

Verdy, A, Cornuelle B, Mazloff MR, Rudnick DL.  2017.  Estimation of the tropical Pacific Ocean state 2010-13. Journal of Atmospheric and Oceanic Technology. 34:1501-1517.   10.1175/jtech-d-16-0223.1   AbstractWebsite

A data-assimilating 1/38 regional dynamical ocean model is evaluated on its ability to synthesize components of the Tropical Pacific Ocean Observing System. The four-dimensional variational data assimilation (4DVAR) method adjusts initial conditions and atmospheric forcing for overlapping 4-month model runs, or hindcasts, that are then combined to give an ocean state estimate for the period 2010-13. Consistency within uncertainty with satellite SSH and Argo profiles is achieved. Comparison to independent observations from Tropical Atmosphere Ocean (TAO) moorings shows that for time scales shorter than 100 days, the state estimate improves estimates of TAO temperature relative to an optimally interpolated Argo product. The improvement is greater at time scales shorter than 20 days, although unpredicted variability in the TAO temperatures implies that TAO observations provide significant information in that band. Larger discrepancies between the state estimate and independent observations from Spray gliders deployed near the Galapagos, Palau, and Solomon Islands are attributed to insufficient model resolution to capture the dynamics in strong current regions and near coasts. The sea surface height forecast skill of the model is assessed. Model forecasts using climatological forcing and boundary conditions are more skillful than climatology out to 50 days compared to persistence, which is a more skillful forecast than climatology out to approximately 20 days. Hindcasts using reanalysis products for atmospheric forcing and open boundary conditions are more skillful than climatology for approximately 120 days or longer, with the exact time scale depending on the accuracy of the state estimate used for initializing and on the reanalysis forcing. Estimating the model representational error is a goal of these experiments.

Kurapov, AL, Pelland NA, Rudnick DL.  2017.  Seasonal and interannual variability in along-slope oceanic properties off the US West Coast: Inferences from a high-resolution regional model. Journal of Geophysical Research-Oceans. 122:5237-5259.   10.1002/2017jc012721   AbstractWebsite

A 6 year, 2009-2014 simulation using a 2 km horizontal resolution ocean circulation model of the Northeast Pacific coast is analyzed with focus on seasonal and interannual variability in along-slope subsurface oceanic properties. Specifically, the fields are sampled on the isopycnal surface sigma = 26.5 kg m(-3) that is found between depths of 150 and 300 m below the ocean surface over the continental slope. The fields analyzed include the depth z(26.5), temperature T-26.5, along-slope current v(26.5), and the average potential vorticity PV between sigma = 26.5 and 26.25 kg m(-3). Each field is averaged in the cross-shore direction over the continental slope and presented as a function of the alongshore coordinate and time. The seasonal cycle in z(26.5) shows a coherent upwelling-downwelling pattern from Mexico to Canada propagating to the north with a speed of 0.5 m s(-1). The anomalously deep (220 m) z(26.5) displacement in spring-summer 2014 is forced by the southern boundary condition at 24 degrees N as a manifestation of an emerging strong El Nino. The seasonal cycle in T-26.5 is most pronounced between 36 degrees N and 53 degrees N indicating that subarctic waters are replaced by warmer Californian waters in summer with the speed close 0.15 m s(-1), which is consistent with earlier estimates of the undercurrent speed and also present v(26.5) analyses. The seasonal patterns and anomalies in z(26.5) and T-26.5 find confirmation in available long-term glider and shipborne observations. The PV seasonality over the slope is qualitatively different to the south and north of the southern edge of Heceta Bank (43.9 degrees N).

Rudnick, DL, Zaba KD, Todd RE, Davis RE.  2017.  A climatology of the California Current System from a network of underwater gliders. Progress in Oceanography. 154:64-106.   10.1016/j.pocean.2017.03.002   AbstractWebsite

Autonomous underwater gliders offer the possibility of sustained observation of the coastal ocean. Since 2006 Spray underwater gliders in the California Underwater Glider Network (CUGN) have surveyed along California Cooperative Oceanic Fisheries Investigations (CalCOFI) lines 66.7, 80.0, and 90.0, constituting the world's longest sustained glider network, to our knowledge. In this network, gliders dive between the surface and 500 m, completing a cycle in 3 h and covering 3 km in that time. Sections extend 350500 km offshore and take 2-3 weeks to occupy. Measured variables include pressure, temperature, salinity, and depth-average velocity. The CUGN has amassed over 10,000 glider-days, covering over 210,000 km with over 95,000 dives. These data are used to produce a climatology whose products are for each variable a mean field, an annual cycle, and the anomaly from the annual cycle. The analysis includes a weighted least-squares fit to derive the mean and annual cycle, and an objective map to produce the anomaly. The final results are variables on rectangular grids in depth, distance offshore, and time. The mean fields are finely resolved sections across the main flows in the California Current System, including the poleward California Undercurrent and the equatorward California Current. The annual cycle shows a phase change from the surface to the thermocline, reflecting the effects of air/sea fluxes at the surface and upwelling in the thermocline. The interannual anomalies are examined with an emphasis on climate events of the last ten years including the 2009-2010 El Nino, the 2010-2011 La Nina, the warm anomaly of 2014-2015, and the 2015-2016 El Nino. (C) 2017 Elsevier Ltd. All rights reserved.

Todd, RE, Rudnick DL, Sherman JT, Owens WB, George L.  2017.  Absolute velocity estimates from autonomous underwater gliders equipped with Doppler current profilers. Journal of Atmospheric and Oceanic Technology. 34:309-333.   10.1175/jtech-d-16-0156.1   AbstractWebsite

Doppler current profilers on autonomous underwater gliders measure water velocity relative to the moving glider over vertical ranges of O(10) m. Measurements obtained with 1-MHz Nortek acoustic Doppler dual current profilers (AD2CPs) on Spray gliders deployed off Southern California, west of the Galapagos Archipelago, and in the Gulf Stream are used to demonstrate methods of estimating absolute horizontal velocities in the upper 1000m of the ocean. Relative velocity measurements nearest to a glider are used to infer dive-dependent flight parameters, which are then used to correct estimates of absolute vertically averaged currents to account for the accumulation of biofouling during months-long glider missions. The inverse method for combining Doppler profiler measurements of relative velocity with absolute references to estimate profiles of absolute horizontal velocity is reviewed and expanded to include additional constraints on the velocity solutions. Errors arising from both instrumental bias and decreased abundance of acoustic scatterers at depth are considered. Though demonstrated with measurements from a particular combination of platform and instrument, these techniques should be applicable to other combinations of gliders and Doppler current profilers.

Wijesekera, HW, Shroyer E, Tandon A, Ravichandran M, Sengupta D, Jinadasa SUP, Fernando HJS, Agrawal N, Arulananthan K, Bhat GS, Baumgartner M, Buckley J, Centurioni L, Conry P, Farrar TJ, Gordon AL, Hormann V, Jarosz E, Jensen TG, Johnston S, Lankhorst M, Lee CM, Leo LS, Lozovatsky I, Lucas AJ, MacKinnon J, Mahadevan A, Nash J, Omand MM, Pham H, Pinkel R, Rainville L, Ramachandran S, Rudnick DL, Sarkar S, Send U, Sharma R, Simmons H, Stafford KM, Laurent LS, Venayagamoorthy K, Venkatesan R, Teague WJ, Wang DW, Waterhouse AF, Weller R, Whalen CB.  2016.  ASIRI: An Ocean–Atmosphere Initiative for Bay of Bengal. Bulletin of the American Meteorological Society. 97:1859-1884.   10.1175/bams-d-14-00197.1   Abstract

Air–Sea Interactions in the Northern Indian Ocean (ASIRI) is an international research effort (2013–17) aimed at understanding and quantifying coupled atmosphere–ocean dynamics of the Bay of Bengal (BoB) with relevance to Indian Ocean monsoons. Working collaboratively, more than 20 research institutions are acquiring field observations coupled with operational and high-resolution models to address scientific issues that have stymied the monsoon predictability. ASIRI combines new and mature observational technologies to resolve submesoscale to regional-scale currents and hydrophysical fields. These data reveal BoB’s sharp frontal features, submesoscale variability, low-salinity lenses and filaments, and shallow mixed layers, with relatively weak turbulent mixing. Observed physical features include energetic high-frequency internal waves in the southern BoB, energetic mesoscale and submesoscale features including an intrathermocline eddy in the central BoB, and a high-resolution view of the exchange along the periphery of Sri Lanka, which includes the 100-km-wide East India Coastal Current (EICC) carrying low-salinity water out of the BoB and an adjacent, broad northward flow (∼300 km wide) that carries high-salinity water into BoB during the northeast monsoon. Atmospheric boundary layer (ABL) observations during the decaying phase of the Madden–Julian oscillation (MJO) permit the study of multiscale atmospheric processes associated with non-MJO phenomena and their impacts on the marine boundary layer. Underway analyses that integrate observations and numerical simulations shed light on how air–sea interactions control the ABL and upper-ocean processes.

Jacox, MG, Hazen EL, Zaba KD, Rudnick DL, Edwards CA, Moore AM, Bograd SJ.  2016.  Impacts of the 2015-2016 El Nino on the California Current System: Early assessment and comparison to past events. Geophysical Research Letters. 43:7072-7080.   10.1002/2016gl069716   AbstractWebsite

The 2015-2016 El Nino is by some measures one of the strongest on record, comparable to the 1982-1983 and 1997-1998 events that triggered widespread ecosystem change in the northeast Pacific. Here we describe impacts of the 2015-2016 El Nino on the California Current System (CCS) and place them in historical context using a regional ocean model and underwater glider observations. Impacts on the physical state of the CCS are weaker than expected based on tropical sea surface temperature anomalies; temperature and density fields reflect persistence of multiyear anomalies more than El Nino. While we anticipate El Nino-related impacts on spring/summer 2016 productivity to be similarly weak, their combination with preexisting anomalous conditions likely means continued low phytoplankton biomass. This study highlights the need for regional metrics of El Nino's effects and demonstrates the potential to assess these effects before the upwelling season, when altered ecosystem functioning is most apparent.

Johnston, TMS, Chaudhuri D, Mathur M, Rudnick DL, Sengupta D, Simmons HL, Tandon A, Venkatesan R.  2016.  Decay mechanisms of near-inertial mixed layer oscillations in the Bay of Bengal. Oceanography. 29:180-191.   10.5670/oceanog.2016.50   AbstractWebsite

Winds generate inertial and near-inertial currents in the upper ocean. These currents dominate the kinetic energy and contain most of the vertical shear in horizontal currents. Subsequent shear instabilities lead to mixing. In the Bay of Bengal, the annual mean wind energy input and near-inertial mixed layer energy is almost as large as in the mid-latitude storm tracks. Also, mixing associated with these waves is known to affect mixed layer heat content, sea surface temperature, and, thus, precipitation in coupled global models. Therefore, the mechanisms leading to the decay of these currents in the mixed layer and below are of considerable importance. Two such decay mechanisms are examined here. One mechanism is the downward propagation of near-inertial internal waves, which is aided by the mesoscale circulation and is observed with a rapidly profiling float. In a few days (faster than at mid-latitudes), the near-inertial wave group propagated from the base of the mixed layer to 250 m depth in the stratified interior. Another decay mechanism is enhanced shear generation at the mixed layer base from periodic alignment of rotating, near-inertial current shear and winds, which is observed with a mooring and analyzed with a simple two-layer model.

Shroyer, EL, Rudnick DL, Farrar JT, Lim B, Venayagamoorthy SK, St Laurent LC, Garanaik A, Moum JN.  2016.  Modification of upper-ocean temperature structure by subsurface mixing in the presence of strong salinity stratification. Oceanography. 29:62-71.   10.5670/oceanog.2016.39   AbstractWebsite

The Bay of Bengal has a complex upper-ocean temperature and salinity structure that is, in places, characterized by strong salinity stratification and multiple inversions in temperature. Here, two short time series from continuously profiling floats, equipped with microstructure sensors to measure subsurface mixing, are used to highlight implications of complex hydrography on upper-ocean heat content and the evolution of sea surface temperature. Weak mixing coupled with the existence of subsurface warm layers suggest the potential for storage of heat below the surface mixed layer over relatively long time scales. On the diurnal time scale, these data demonstrate the competing effects of surface heat flux and subsurface mixing in the presence of thin salinity-stratified mixed layers with temperature inversions. Pre-existing stratification can amplify the sea surface temperature response through control on the vertical extent of heating and cooling by surface fluxes. In contrast, subsurface mixing entrains relatively cool water during the day and relatively warm water during the night, damping the response to daytime heating and nighttime cooling at the surface. These observations hint at the challenges involved in improving monsoon prediction at longer, intraseasonal time scales as models may need to resolve upper-ocean variability over short time and fine vertical scales.

Rudnick, DL, Davis RE, Sherman JT.  2016.  Spray underwater glider operations. Journal of Atmospheric and Oceanic Technology. 33:1113-1122.   10.1175/jtech-d-15-0252.1   AbstractWebsite

Operational statistics for the Spray underwater glider are presented to demonstrate capabilities for sustained observations. An underwater glider is an autonomous device that profiles vertically by changing buoyancy and flies horizontally on wings. The focus has been on sustained observations of boundary currents to take advantage of the glider's small size, which allows it to be deployed and recovered from small vessels close to land, and the fine horizontal resolution delivered by the glider, which is scientifically desirable in boundary regions. Since 2004, Spray underwater gliders have been deployed for over 28 000 days, traveling over 560 000 km, and delivering over 190 000 profiles. More than 10 gliders, on average, have been in the water since 2012. Statistics are given in the form of histograms for 297 completed glider missions of longer than 5 days. The statistics include mission duration, number of dives, distance over ground, and horizontal and vertical distance through water. A discussion of problems, losses, and short missions includes a survival analysis. The most extensive work was conducted in the California Current system, where observations on three across-shorelines have been sustained, with 97% coverage since 2009. While the authors have certain advantages as developers and builders of the Spray underwater glider and Spray may have design and construction advantages, they believe these statistics are a sound basis for optimism about the widespread future of gliders in oceanographic observing.

MacKinnon, JA, Nash JD, Alford MH, Lucas AJ, Mickett JB, Shroyer EL, Waterhouse AF, Tandon A, Sengupta D, Mahadevan A, Ravichandran M, Pinkel R, Rudnick DL, Whalen CB, Alberty MS, Lekha JS, Fine EC, Chaudhuri D, Wagner GL.  2016.  A tale of two spicy seas. Oceanography. 29:50-61.   10.5670/oceanog.2016.38   AbstractWebsite

Upper-ocean turbulent heat fluxes in the Bay of Bengal and the Arctic Ocean drive regional monsoons and sea ice melt, respectively, important issues of societal interest. In both cases, accurate prediction of these heat transports depends on proper representation of the small-scale structure of vertical stratification, which in turn is created by a host of complex submesoscale processes. Though half a world apart and having dramatically different temperatures, there are surprising similarities between the two: both have (1) very fresh surface layers that are largely decoupled from the ocean below by a sharp halocline barrier, (2) evidence of interleaving lateral and vertical gradients that set upper-ocean stratification, and (3) vertical turbulent heat fluxes within the upper ocean that respond sensitively to these structures. However, there are clear differences in each ocean's horizontal scales of variability, suggesting that despite similar background states, the sharpening and evolution of mesoscale gradients at convergence zones plays out quite differently. Here, we conduct a qualitative and statistical comparison of these two seas, with the goal of bringing to light fundamental underlying dynamics that will hopefully improve the accuracy of forecast models in both parts of the world.

Zaba, KD, Rudnick DL.  2016.  The 2014-2015 warming anomaly in the Southern California Current System observed by underwater gliders. Geophysical Research Letters. 43:1241-1248.   10.1002/2015gl067550   AbstractWebsite

Large-scale patterns of positive temperature anomalies persisted throughout the surface waters of the North Pacific Ocean during 2014-2015. In the Southern California Current System, measurements by our sustained network of underwater gliders reveal the coastal effects of the recent warming. Regional upper ocean temperature anomalies were greatest since the initiation of the glider network in 2006. Additional observed physical anomalies included a depressed thermocline, high stratification, and freshening; induced biological consequences included changes in the vertical distribution of chlorophyll fluorescence. Contemporaneous surface heat flux and wind strength perturbations suggest that local anomalous atmospheric forcing caused the unusual oceanic conditions.

Todd, RE, Owens WB, Rudnick DL.  2016.  Potential vorticity structure in the North Atlantic western boundary current from underwater glider observations. Journal of Physical Oceanography. 46:327-348.   10.1175/jpo-d-15-0112.1   AbstractWebsite

Potential vorticity structure in two segments of the North Atlantic's western boundary current is examined using concurrent, high-resolution measurements of hydrography and velocity from gliders. Spray gliders occupied 40 transects across the Loop Current in the Gulf of Mexico and 11 transects across the Gulf Stream downstream of Cape Hatteras. Cross-stream distributions of the Ertel potential vorticity and its components are calculated for each transect under the assumptions that all flow is in the direction of measured vertically averaged currents and that the flow is geostrophic. Mean cross-stream distributions of hydrographic properties, potential vorticity, and alongstream velocity are calculated for both the Loop Current and the detached Gulf Stream in both depth and density coordinates. Differences between these mean transects highlight the downstream changes in western boundary current structure. As the current increases its transport downstream, upper-layer potential vorticity is generally reduced because of the combined effects of increased anticyclonic relative vorticity, reduced stratification, and increased cross-stream density gradients. The only exception is within the 20-km-wide cyclonic flank of the Gulf Stream, where intense cyclonic relative vorticity results in more positive potential vorticity than in the Loop Current. Cross-stream gradients of mean potential vorticity satisfy necessary conditions for both barotropic and baroclinic instability within the western boundary current. Instances of very low or negative potential vorticity, which predispose the flow to various overturning instabilities, are observed in individual transects across both the Loop Current and the Gulf Stream.

Rudnick, DL.  2016.  Ocean research enabled by underwater gliders. Annual Review of Marine Science, Vol 8. 8( Carlson CA, Giovannoni SJ, Eds.).:519-+., Palo Alto: Annual Reviews   10.1146/annurev-marine-122414-033913   Abstract

Underwater gliders are autonomous underwater vehicles that profile vertically by changing their buoyancy and use wings to move horizontally. Gliders are useful for sustained observation at relatively fine horizontal scales, especially to connect the coastal and open ocean. In this review, research topics are grouped by time and length scales. Large-scale topics addressed include the eastern and western boundary currents and the regional effects of climate variability. The accessibility of horizontal length scales of order 1 km allows investigation of mesoscale and submesoscale features such as fronts and eddies. Because the submesoscales dominate vertical fluxes in the ocean, gliders have found application in studies of biogeochemical processes. At the finest scales, gliders have been used to measure internal waves and turbulent dissipation. The review summarizes gliders' achievements to date and assesses their future in ocean observation.

Schonau, MC, Rudnick DL, Cerovecki I, Gopalakrishnan G, Cornuelle BD, McClean JL, Qiu B.  2015.  The Mindanao Current mean structure and connectivity. Oceanography. 28:34-45.   10.5670/oceanog.2015.79   AbstractWebsite

The Mindanao Current (MC), a low-latitude western boundary current in the Pacific Ocean, plays an important role in heat and freshwater transport to the western Pacific warm pool and the Indian Ocean. However, there have been relatively few comprehensive studies of the structure and variability of the MC and its connectivity to regional circulation. The Origins of the Kuroshio and Mindanao Current (OKMC) initiative combines four years of glider observations of the MC, a historical conductivity-temperature-depth (CTD)/float climatology, and results from a global strongly eddying forward ocean general circulation model simulation and a regional ocean state estimate. The MC is resolved as a strong southward current primarily within the upper 200 m, approaching 1 m s(-1), and extending roughly 300 km offshore of Mindanao. Observations and model simulations show a persistent northward Mindanao Undercurrent (MUC) below the thermocline. The MC transports water masses of North Pacific origin southward, while the MUC carries water with South Pacific characteristics northward. The subthermocline transport of the MC and the MUC is connected to other undercurrents in the Philippine Sea. The variability of this transport is a topic of continuing research.

Rudnick, DL, Jan S, Lee CM.  2015.  A new look at circulation in the western North Pacific: Introduction to the special issue. Oceanography. 28:16-23.   10.5670/oceanog.2015.77   AbstractWebsite

The currents in the low-latitude western North Pacific are critical to the general circulation. The North Equatorial Current flows westward, bifurcating off the coast of the Philippines to form the northward-flowing Kuroshio and the southward-flowing Mindanao Current. Below the thermocline, undercurrents flow opposite to the currents above and include the southward-flowing Luzon Undercurrent, the northward-flowing Mindanao Undercurrent, and an eastward-flowing series of North Equatorial Undercurrents. Two complementary programs, Origins of the Kuroshio and Mindanao Current (OKMC) and Observations of Kuroshio Transport and Variability (OKTV), focused on observations and modeling of these currents. Results address the region's circulation, water masses, and eddies. The connectivity between the currents as determined by water masses is of special interest.

Qiu, B, Rudnick DL, Cerovecki I, Cornuelle BD, Chen S, Schonau MC, McClean JL, Gopalakrishnan G.  2015.  The Pacific North Equatorial Current: New insights from the Origins of the Kuroshio and Mindanao Currents (OKMC) Project. Oceanography. 28:24-33.   10.5670/oceanog.2015.78   AbstractWebsite

Located at the crossroads of the tropical and subtropical circulations, the westward-flowing North Equatorial Current (NEC) and its subsequent bifurcation off the Philippine coast near 13 degrees N serve as important pathways for heat and water mass exchanges between the mid- and low-latitude North Pacific Ocean. Because the western Pacific warm pool, with sea surface temperatures > 28 degrees C, extends poleward of 17 degrees N in the western North Pacific, the bifurcation and transport partitioning of the NEC into the Kuroshio and Mindanao Currents are likely to affect the temporal evolution of the warm pool through lateral advection. In addition to its influence on physical conditions, NEC variability is also important to the regional biological properties and the fisheries along the Philippine coast and in the western Pacific Ocean. This article synthesizes our current understandings of the NEC, especially those garnered through the recent Origins of the Kuroshio and Mindanao Current (OKMC) project.

Johnston, TMS, Rudnick DL, Kelly SM.  2015.  Standing internal tides in the Tasman Sea observed by gliders. Journal of Physical Oceanography. 45:2715-2737.   10.1175/jpo-d-15-0038.1   AbstractWebsite

Low-mode internal tides are generated at tall submarine ridges, propagate across the open ocean with little attenuation, and reach distant continental slopes. A semidiurnal internal tide beam, identified in previous altimetric observations and modeling, emanates from the Macquarie Ridge, crosses the Tasman Sea, and impinges on the Tasmanian slope. Spatial surveys covering within 150 km of the slope by two autonomous underwater gliders with maximum profile depths of 500 and 1000 m show the steepest slope near 43 degrees S reflects almost all of the incident energy flux to form a standing wave. Starting from the slope and moving offshore by one wavelength (similar to 150 km), potential energy density displays an antinode-node-antinode-node structure, while kinetic energy density shows the opposite. Mission-mean mode-1 incident and reflected flux magnitudes are distinguished by treating each glider's survey as an internal wave antenna for measuring amplitude, wavelength, and direction. Incident fluxes are 1.4 and 2.3 kW m(-1) from the two missions, while reflected fluxes are 1.2 and 1.8 kW m(-1). From one glider surveying the region of highest energy at the steepest slope, the reflectivity estimates are 0.8 and 1, if one considers the kinetic and potential energy densities separately. These results are in agreement with mode-1 reflectivity of 0.7-1 from a model in one horizontal dimension with realistic topography and stratification. The direction of the incident internal tides is consistent with altimetry and modeling, while the reflected tide is consistent with specular reflection from a straight coastline.