The California Current System in relation to the Northeast Pacific Ocean circulation

Auad, G, Roemmich D, Gilson J.  2011.  The California Current System in relation to the Northeast Pacific Ocean circulation. Progress in Oceanography. 91:576-592.

Date Published:



annual cycle, climate-change, dynamics, ecosystem, eddy, interannual variability, intermediate water, mesoscale, numerical-model, submesoscale transition


The California Current System is described in its regional setting using two modern datasets. Argo provides a broadscale view of the entire eastern North Pacific Ocean for the period 2004-2010, and the High Resolution XBT Network includes transects from Honolulu to San Francisco (1991-2010) and to Los Angeles (2008-2010). Together these datasets describe a California Current of 500-800 km width extending along the coast from 43 degrees N to 23 degrees N. The mean southward transport of the California Current is about 5 Sv off Central and Southern California, with about 2.5 Sv of northward flow on its inshore side. Interannual variations are 50% or more of the mean transports. The salinity minimum in the core of the California Current is supplied by the North Pacific Current and by freshwater from the northern continental shelf and modified by alongshore geostrophic and across-shore Ekman advection as well as eddy fluxes and air-sea exchange. The heat and freshwater content of the California Current vary in response to the fluctuating strength of the alongshore geostrophic flow. On its offshore side, the California Current is influenced by North Pacific Intermediate Waters at its deepest levels and by Eastern Subtropical Mode Waters on shallower density surfaces. In total, the sources of the California Current, its alongshore advection, and its strong interactions with the inshore upwelling region and the offshore gyre interior combine to make this a rich and diverse ecosystem. The present work reviews previous contributions to the regional oceanography, and uses the new datasets to paint a spatially and temporally more comprehensive description than was possible previously. Published by Elsevier Ltd.